

3

Contents

Preface ... 8

1. Developing projects in Microsoft Visual Studio environment 10

1.1. Creating, saving, and opening a project ... 10

1.2. Adding a new form to the project and placing a new control on

the form ... 12

1.3. Setting properties of forms and controls .. 16

1.4. Defining event handlers ... 18

1.5. Making changes to the program text .. 19

1.6. Application launch ... 20

2. Console application: DISKINFO project .. 22

2.1. Creating a console application ... 22

2.2. Receiving the information about current disk .. 24

2.3. Using command line arguments ... 28

3. Exception handling: EXCEP project ... 30

3.1. Handling a specific exception and exception groups 30

3.2. Handling any exception .. 34

3.3. Re-throwing a handled exception... 35

4. Events: EVENTS project .. 37

4.1. Connecting an event to a handler ... 37

4.2. Disconnecting a handler from an event .. 41

4.3. Connecting another handler to an event ... 43

5. Forms: WINDOWS project... 46

5.1. Setting the visual properties of forms. Opening forms in normal

and modal mode .. 46

5.2. Checking the state of the subordinate form ... 49

5.3. Controls adapting to fit the window ... 51

5.4. Modal and non-modal buttons of the dialog window 52

5.5. Setting the active form control ... 54

5.6. Request for confirmation of closing the form .. 54

6. Sharing event handlers and working with keyboard: CALC project 57

6.1. Event handler for multiple controls ... 57

6.2. Calculations with control of the correctness of the input data 58

6.3. The simplest techniques to speed up work using keyboard 60

6.4. Using a keyboard event handler ... 61

6.5. Control over changes to the input data ... 62

4

7. Working with date and time: CLOCK project .. 64

7.1. Displaying the current time on the form .. 64

7.2. Implementation of the stopwatch capabilities .. 66

7.3. Alternative options for executing commands using the mouse 70

7.4. Displaying the current status of the clock and stopwatch

on the taskbar .. 71

8. Text input: TEXTBOXES project ... 72

8.1. Additional highlighting of the active text box ... 72

8.2. Changing the tab order of text boxes ... 74

8.3. Blocking exit from an empty text box ... 76

8.4. Informing the user about the error ... 77

8.5. Providing additional information about the error 78

8.6. Form-level error checking .. 78

9. Mouse event handling: MOUSE project ... 80

9.1. Dragging with the mouse. Setting the z-order of controls

on a form ... 80

9.2. Resizing with the mouse .. 84

9.3. Using additional cursors ... 86

9.4. Handling a situation with simultaneous pressing

of several mouse buttons ... 87

9.5. Dragging and resizing a control of any type.

Using the find and replace tool ... 90

10. Drag-and-drop: ZOO project... 93

10.1. Dragging labels on a form .. 93

10.2. Dragging labels to text boxes ... 96

10.3. Interaction of labels .. 97

10.4. Actions in case of dragging to invalid target ... 99

10.5. Additional coloring of source and target while dragging 100

10.6. Customizing the cursor in drag-and-drop mode 101

10.7. Information about the current state of the program.

Buttons with images .. 102

10.8. Restoring the initial state .. 105

11. Cursors and icons: CURSORS project.. 107

11.1. Using standard cursors ... 107

11.2. Setting the cursor for a form and waiting mode indication 109

11.3. Connecting new cursors to the project and saving them

as embedded resources .. 111

11.4. Working with icons .. 112

11.5. Placing an icon of application in the notification area 113

12. Menus and processing of text files: TEXTEDIT1 project 116

12.1. Menu creation ... 116

12.2. Saving text to a file... 119

5

12.3. Clearing the editing area and opening an existing file 121

12.4. Request to save changes ... 124

13. Advanced menu options, color and font setting: TEXTEDIT2

project .. 126

13.1. Setting the font style (menu items as checkboxes) 126

13.2. Setting text alignment (menu items as radio buttons) 128

13.3. Setting the color of symbols and background color (third-

level menu commands and the Color dialog box) 130

13.4. Setting font properties using the Font dialog box 131

14. Editing commands, context menus: TEXTEDIT3 project 134

14.1. Editing commands .. 134

14.2. Special visualization of unavailable editing commands.

Working with the clipboard .. 136

14.3. Creating a context menu ... 138

15. Toolbar: TEXTEDIT4 project... 140

15.1. Creation a toolbar and shortcut buttons. Adding images

to menu items .. 140

15.2. Using shortcut buttons that behave as checkboxes

and radio buttons ... 143

16. Status bar and hints: TEXTEDIT5 project .. 147

16.1. Using the status bar .. 147

16.2. Inaccessible shortcut buttons.. 148

16.3. Hiding the toolbar and status bar ... 149

16.4. Displaying hints on the status bar .. 149

17. Formatting a document: TEXTEDIT6 project .. 152

17.1. Replacing the TextBox control with the RichTextBox control 152

17.2. Correcting the state of shortcut buttons and menu commands

when changing the current format .. 155

17.3. Setting paragraph properties .. 157

17.4. Display the current row and column .. 159

17.5. Loading and saving text without format settings 161

18. Colors: COLORS project .. 163

18.1. Defining a color as a combination of four color components.

Track bars and scroll bars ... 163

18.2. Inverting colors and output color constants ... 167

18.3. Grayscale colors ... 168

18.4. Displaying color names .. 169

18.5. Controls and their associated labels ... 171

18.6. Anchoring controls ... 172

19. Drop-down list and list box: LISTBOXES project 175

19.1. Creating and using drop-down lists ... 175

19.2. List box: adding and removing items ... 177

6

19.3. Additional list operations ... 179

19.4. Performing list operations with the mouse .. 182

20. Checkboxes and checked list boxes: CHECKBOXES project 186

20.1. Checkboxes and checking their state ... 186

20.2. Global setting of CheckedListBox items ... 189

20.3. Using checkboxes with three states ... 190

21. Viewing images: IMGVIEW project .. 193

21.1. Displaying a directory tree ... 193

21.2. View images from image files in the selected directory 200

21.3. Docking of controls and its features .. 206

21.4. Setting the image view mode ... 208

21.5. Saving information about the state of the program

in the Windows registry .. 211

21.6. Restoring information from the Windows registry 213

22. MDI application: JPEGVIEW project .. 216

22.1. Opening and closing child forms in MDI application 216

22.2. Standard actions with child forms .. 220

22.3. Adding a list of open child forms to the menu 222

22.4. Closing all child forms at the same time .. 223

22.5. Image scaling .. 223

22.6. Automatic resizing of child forms.. 224

22.7. Additional control tools .. 225

22.8. Scrolling the image using the keyboard ... 228

23. Splash screen application: TRIGFUNC project .. 231

23.1. Creating a table of trigonometric function values 231

23.2. Displaying the splash window when loading the program 235

23.3. Using the splash window as an information window 237

23.4. Displaying the progress of the program loading 238

23.5. Early termination of the program ... 240

23.6. Dragging the splash window .. 241

24. Creating controls at runtime: HTOWERS project 243

24.1. Creating a start position ... 243

24.2. Redrawing the tower when changing the number of blocks 244

24.3. Dragging blocks to a new location ... 245

24.4. Restoring the start position and counting the number

of block movings ... 248

24.5. Information about solving the problem .. 249

24.6. Demo mode implementation .. 250

25. Study assignments ... 253

25.1. General requirements ... 253

25.2. CONSOLE project: console applications,

file and directory processing ... 253

7

25.3. DIALOGS project: form interaction .. 256

25.4. SYNC project: control synchronization ... 259

25.5. DRAGDROP project: drag-and-drop mode ... 262

25.6. TIMER project: timer-controlled programs ... 265

25.7. REGISTRY project: dialog boxes and working

with the Windows registry .. 269

25.8. MDIFORMS project: MDI applications .. 273

References ... 277

8

Preface

This textbook focuses on developing a graphical user interface based on the

Windows Forms class library. This library appeared in .NET Framework 1.0

(the Microsoft Visual Studio .NET 2003 IDE), was significantly improved in

.NET Framework 2.0 (the Microsoft Visual Studio 2005 IDE) and after that

practically did not change; nevertheless, it was included in all subsequent ver-

sions of Microsoft Visual Studio. Despite the presence of the newer Windows

Presentation Foundation class library, which is related to the development of

the graphical interface and provides more features, the Windows Forms library

retains its position, due to greater ease of use and convenient visual design tools.

At the same time, the capabilities of this library are quite enough for the devel-

opment of fully functional Windows desktop applications of medium complexi-

ty. In addition, the Windows Forms library contains a number of important

concepts related to GUI design. Therefore, studying it in a course on the basics

of user interface development seems to be quite justified.

The learning material of the book is presented in the form of descriptions

of 23 examples, which are fully functional software projects. Each of the exam-

ples focuses on a specific topic indicated in its name, but much additional in-

formation is provided in the description of the project development process and

accompanying comments. We focuse on best practices for developing event-

driven applications and the efficient use of Windows Forms library compo-

nents. The tools providing a convenient and reliable dialogue between the pro-

gram and the user are discussed in detail. We also discuss common errors that

occur when using the various Windows Forms library classes and show how to

fix them.

Most of the examples are slightly modified versions of the examples given

in [1]. The exception is the IMGVIEW example, which has been changed more

significantly by eliminating several obsolete controls (DriveListBox, DirListBox,

and FileListBox) and using the TreeView control instead, which allows visualizing

hierarchical lists of data.

The book assumes an acquaintance with the basics of programming in the

C# language at the level of knowledge of the system of basic types and control

statements (see, for instance, [2]). The in-depth knowledge of the .NET object

model is not required. Mostly C# 3.0 is used, which allows you to develop pro-

jects in the Visual Studio 2008 and higher. Among the innovations, only interpo-

lated strings are used, which appeared in C# 6.0 (Visual Studio 2015); in earlier

versions, you can use the string.Format function instead. The LINQ queries (im-

plemented in C# 3.0) are used only in the projects LISTBOXES and IMGVIEW

9

(Chapters 19 and 21) and are commented in detail. Chapter 1 provides a detailed

description of the Microsoft Visual Studio tools used to develop Windows ap-

plications.

The last chapter of the book contains 65 study assignments divided in-

to 7 groups related to the following topics:

 developing console applications,

 interaction between windows of an application,

 synchronizing controls and sharing event handlers,

 implementing the drag-and-drop mode,

 creating timer-driven programs,

 use of standard dialog boxes and the Windows registry,

 developing MDI applications.

Most assignments contain references to sections of the book that describe

the required controls and how to use them.

10

1. Developing projects in Microsoft Visual Studio
environment

Currently, the most common version of Microsoft Visual Studio is version

2019, targeting the .NET 4.8 platform and the C# 8.0 language, although most of

the features discussed are available for earlier versions. In particular, the Win-

dows Forms library itself has remained unchanged since the release of .NET

3.5, C# 3.0, and Visual Studio 2008.

1.1. Creating, saving, and opening a project

When you start Visual Studio, the Start Page is automatically loaded into

it, which allows you to quickly load one of the previously developed projects

(the Open recent list), open any other existing project (the Open a project or

solution item), and also create a new project (the Create a new project item).

All these actions are also available from the menu of the Visual Studio environ-

ment:

 File | New | Project… or Ctrl+Shift+N – create a new project;

 File | Open | Project/Solution… or Ctrl+Shift+O – open an existing

project;

 File | Recent Projects and Solutions – open one of the recently de-

veloped projects.

The Visual Studio environment is organized in such a way that you cannot

create a “stand alone” project. Each project must be contained in a special entity

called a solution, which can be described as a group of related projects. Only

one solution can be loaded into the Visual Studio environment at a time; loading

another solution leads to automatic closing of the previous solution.

When creating a new project, a dialog box appears on the screen, in which

first of all you need to select the language used (in our case, C# or Visual C#),

and then the project template and its name. As a template for all considered pro-

jects (except for the first two projects DISKINFO and EXCEP), you should

choose Windows Forms App (or Windows Forms Application). As to the

name, it is recommended to use the name of the example given in the title of the

corresponding chapter, for example, EVENTS (see Chapter 4). Note that the

project name can contain not only digits and Latin letters, but also other charac-

ters allowed in file names, including spaces, although this feature is not recom-

mended for use.

In Visual Studio, when creating a new project, you must immediately speci-

fy the directory to save it (the Location text box). Project placement is also af-

fected by information related to the solution in which the project will be placed,

11

such as the Place solution and project in the same directory checkbox. Note

that previous versions of Visual Studio used a checkbox with the opposite mean-

ing, Create directory for solution. If the solution includes a single project, then

you should check the Place solution and project in the same directory check-

box (or uncheck the Create directory for solution checkbox); this will cause

the created solution to have the same name as the created project, and all the

files associated with the project and its solution will be placed in the same direc-

tory specified in the Location text box.

If the Place solution and project in the same directory checkbox is un-

checked (or the Create directory for solution checkbox is checked), you can

specify a solution name that may be different from the project name. In this situ-

ation, a more complicated directory hierarchy is created: a solution directory

will be created in the directory with the name specified in the Location text box

and the project directory will be created in the solution directory.

Note one more feature of the Visual Studio environment (which we, how-

ever, will not use): the created project can be added to the current solution.

To save all changes made to the current project (or rather, to the current so-

lution), Visual Studio provides the File | Save All menu command, as well as

the Ctrl+Shift+S shortcut key.

When you open an existing project, the Open dialog box appears on the

screen, in which you can select either a file with the .sln extension (containing

information about the solution with the specified name) or a file with the .csproj

extension (containing information about the project with the specified name).

However, even if you select some project, the entire solution project containing

it will be loaded.

Examples TEXTEDIT2 – TEXTEDIT6 suggest not creating a new project,

but modifying an existing project. Before starting to develop such examples, you

should copy all the solution files from the example with the previous number to

a new directory, then load this resulting copy into Visual Studio and start modi-

fying it.

Let us describe the steps for modifying projects using the example of con-

verting the TEXTEDIT1 project into the TEXTEDIT2 project.

First, you should change the name of the project and the name of the asso-

ciated solution. The simplest way to perform this is using the Solution Explorer

window, usually located on the right side of the screen (Fig. 1.1 on the left

shows this window for the TEXTEDIT1 project): just select the line correspond-

ing to the project in the Solution Explorer window (in Fig. 1.1, this line is high-

lighted) or a solution (this line begins with the word Solution), press the F2 key,

enter a new name and press Enter. The same action should be performed for the

name of the solution. The Solution Explorer window after changing the name

TEXTEDIT1 of the project and its solution to TEXTEDIT2 is shown in

Fig. 1.1 on the right.

12

You should also change the assembly name, that is, the name of the result-

ing exe-file. To do this, run the Project | <Project name> Properties menu

command (in our case, Project | TEXTEDIT2 Properties), go to the corre-

sponding editor tab with the project name, select the Application section of this

tab, and specify a new name in the Assembly name text box (Fig. 1.2). You can

also change the default namespace name for this project (the Default

namespace text box), but this is not necessary.

Fig. 1.1. Solution Explorer window before changing the project name (left)

and after changing it (right)

Fig. 1.2. Top part of the project properties window

1.2. Adding a new form to the project and placing a new control
on the form

When you create a new Windows Forms Application project, its main

form (a class named Form1) is automatically created and immediately loaded into

Visual Studio. A set of files is associated with Form1, the main of which are

Form1.cs and Form1.Designer.cs. These files contain a description of this form

in C#, and the second of them (Form1.Designer.cs) contains the part of the de-

scription that is generated automatically in response to various developer actions

related to visual design (the developer’s own code is usually placed in the

Form1.cs file).

If you need to use additional forms in your project (see, for example, Chap-

ter 5), then the easiest way to add them to the project is by using the Project |

Add Form (Windows Forms)… menu command (in previous versions, the

command was named Project | Add Windows Form…). When this command

is executed, a dialog box appears in which you must specify the name of the

added form (which will also be the initial part of the names of the files contain-

13

ing its description). The examples described always use the default form names

(Form1, Form2, etc.).

Any created form is displayed in the Visual Studio editor in design mode

(an image of the form and its contents appears on the screen); the corresponding

editor tab name ends with the text [Design]. For example, for the main form

Form1, the tab name contains the text Form1.cs [Design]. To go to the contents

of the corresponding cs-file, just press the F7 key; a new tab with the text of this

file will appear in the editor (the name of this tab will contain the file name, for

example, Form1.cs). To switch back from the program code to the form image,

you can use the Shift+F7 key combination. You can also switch between the

form image and the program code using the context menu: when you right-click

on the image of the form, the first item of the pop-up menu is named View Code

and allows you to go to the program code of the cs-file, and when the context

menu for the program code of the cs-file is called, the View Designer menu

item is available which allows you to return to design mode.

Another convenient way to switch between different windows of the Visual

Studio environment is to use the Ctrl+Tab key combination: after pressing it, an

auxiliary window appears on the screen with a list of all loaded files and forms

(Active Files), as well as all open auxiliary tool windows (Active Tool Win-

dows). Fig. 1.3 shows an example of this window. After this window appears,

you should, without releasing the Ctrl key, select the name of the file or tool

window that you want to activate (you can use the arrow keys and the Tab key

to select), and then release the Ctrl key.

Fig. 1.3. Auxiliary window for selecting one of the loaded files

or tool windows of the Visual Studio environment

Any tab in the editor can be closed; to do this, just make it active and press

the Ctrl+F4 key combination or call the context menu of a tab by right-clicking

on its tab name and select Close.

If the required form is not loaded in the editor after loading an existing pro-

ject, it is enough to double-click the name of this form in the Solution Explorer

window (see Fig. 1.1). Alternatively, you can right-click the name of this form

and select Open from the context menu that appears. This menu also contains

14

the View Code item, which allows you to load the text of the cs-file into the edi-

tor, and the View Designer, which allows you to load the form image into the

editor in design mode.

To place a new control on the form, use the Toolbox window (this window

can be displayed on the screen either by the View | Toolbox menu command or

by the Ctrl+Alt+X key combination). This window is usually displayed on the

left side of the screen; Fig. 1.4 contains a view of the upper part of the Toolbox

window when the All Windows Forms group is selected in it. Note that controls

appear in the Toolbox window only when the editor is in design mode. In this

window, it is necessary to select the group containing the required control (by

clicking on the name of this group), then click on the name of the required con-

trol to select it (in Fig. 1.4, the Button control is selected), and finally click in

the position of the form where the selected control is supposed to be placed.

In order to select a control in the Toolbox window, you do not need to

know which group it is contained in, since this window contains the All Win-

dows Forms group, which lists all available controls in alphabetical order (see

Fig. 1.4).

Fig. 1.4. Top view of the Toolbox window

If the Toolbox window covers the part of the form where you want to place

the control, you can click on the image in the title bar of the Toolbox win-

dow; this will cause the Toolbox window to be positioned to the left of the form

window, and the image will be changed to . Note that, in this mode, the

Toolbox window will not automatically hide after placing the selected control

on the form (to hide the Toolbox window, just click on the image).

To quickly place several controls of the same type on a form, you should,

after selecting the required control in the Toolbox window, click the form sev-

eral times while holding down the Ctrl key. If you need to deselect a control in

the Toolbox window without placing it on the form, then it is enough to select

the Pointer item in this window (it is located first in any group of controls – see

Fig. 1.4).

If you want to place a control not on a form, but in another control (for ex-

ample, in a Panel control), then, when placing the control, you must click in the

15

area of the target control. Only special controls called container controls can be

used as target controls (the form itself is a container control too). A container

control (form, panel, etc.) that contains other controls is called the parent of the

child controls it contains.

When describing the stages of project development, we will always indicate

in which container control each control should be placed.

You can display a parent-child hierarchy of all controls located in a form.

The corresponding window is displayed on the screen by the View | Other

Windows | Document Outline menu command. Using the drag-and-drop of the

controls in this window, you can also adjust their hierarchy. See Fig. 21.7

in Section 21.2 for an example of the Document Outline window.

After adding a control to a form, it automatically gets a name, which is

stored in its Name property. By default, the name of any control starts with

a lowercase letter and consists of the control type name and an order number.

Thus, the first button placed on the form (a control of type Button) will be named

button1, the second button will be named button2, and so on. Forms have names

that begin with an uppercase letter (Form1, Form2, etc.); this is due to the fact

that these names are the names of new classes that are descendants of the base

Form class. The default name can always be replaced with another name that al-

lows, for example, to clarify the purpose of a particular control (for example, the

button containing the text OK can be named as btnOK). However, the described

projects almost always use the control names offered by the Visual Studio envi-

ronment by default; this allows you to reduce the number of steps for setting

control properties and simplifies reading program code. “Meaningful” names are

used only for menu items, shortcut buttons, and sections of the status bar (see

Chapters 12, 15, 16). It should be noted, however, that when developing large

projects it is advisable to use meaningful names for all controls.

When describing actions for adding a control to a form, it is almost never

specified how to position a control on its parent control, since this can be easily

determined from the given figure. Let us list the ways to position a control:

 dragging with the mouse over the form (while auxiliary alignment lines

appear on the form allowing the control to snap to the boundaries of the

form or place it at the level of the boundaries of existing controls);

 using the alignment panel Layout (see Section 18.1, Comment 1);

 move by one pixel using the arrow keys;

 explicit indication of the value of the Location property in the Properties

window (working with the Properties window is discussed in detail in

Section 1.3).

The sizes of the visual controls are also usually not specified. To adjust the

control size, you can drag with the mouse on one of the handles surrounding the

selected control, or use the arrow keys while holding down the Shift key. You

16

can also explicitly set the Size property in the Properties window or use the

Layout panel.

For more information related to customizing the application menu, its

toolbar, and status bar, see Chapters 12, 15, 16.

1.3. Setting properties of forms and controls

To configure the properties of forms and controls, use the Properties win-

dow, which can be quickly accessed using the Alt+Enter key combination (you

can return back to the form image using the previously described Ctrl+Tab com-

bination). The Properties window is usually located in the lower right corner of

the screen and can be in two modes: Properties and Events (see Fig. 1.5). In

this section, we will consider the Properties mode designed to display the prop-

erties of a selected control or a group of controls (to switch to this mode, click

the third button on the toolbar of the Properties window).

Fig. 1.5. Properties window in Properties (left) and Events (right) modes

If a group of controls is selected, then the properties window displays only

those properties that are available for all selected controls.

Selecting a group of controls allows you to quickly set them to the same

size, headers or other common properties, as well as move them, while main-

taining their relative position. Let us list the ways to select a group of controls:

 clicking on the controls while holding down the Shift or Ctrl key;

 coverage of controls by a dotted frame that appears on the form when

moving the mouse with the left button pressed (to select a control, it is

enough to grab a part of it with the frame).

If a group of controls is selected, then one control of this group is current

(its markers are white). Fig. 1.6 shows a fragment of a form with four selected

controls; the current control is button2. The result of some actions (for example,

alignment of controls on a form – see Section 18.1) depends on which control of

the selected group is the current one. To make another control from the selected

group the current one, just click on it with the mouse. To deselect a group of

controls, select a control that is not included in this group.

17

Fig. 1.6. Fragment of a form with a group of selected controls

It is useful to know that if a control is selected, then, to select its parent

control, it is enough to press the Esc key (in this way, you can quickly select any

container control, even if it is entirely covered by child controls). There is an

even easier way to select a form: just click on its title bar.

Using the first two buttons of the Properties window (see Fig. 1.5),

you can configure how the properties are displayed: by category (the first but-

ton) or in alphabetical order of names (the second button). Each category has

a name (for example, Appearance) and contains “related” properties. By group-

ing properties alphabetically, it is easier to navigate to the desired property; at

the same time, at the initial acquaintance with the properties available in the

control, it is more convenient to use grouping by categories.

In the example projects, setting the properties of forms and controls is de-

scribed in the listings entitled Properties. An example of such a listing is the

following listing taken from Section 5.1:

Properties
Form1: Text = Main Window, MaximizeBox = False,

 FormBorderStyle = FixedSingle

button1: Text = Open subordinate Window

button2: Text = Open dialog window

In the property setting listings, we first specify the name of the control

whose properties we want to change and then, after the colon, a list of its custom

properties in the format

property name = new property value

(the property value is in bold). Properties are listed separated by commas.

Controls can have composite properties, that is, properties that have their

own properties (for example, Font). If we need to set one or more properties of

such a composite property, the dot separator is used in the property setting list-

ing, for example (this is a copy of listing from Section 23.2):

Properties
Form2: Text = empty string, ControlBox = False,

 FormBorderStyle = FixedSingle, Opacity = 80%,

 ShowInTaskbar = False, StartPosition = CenterScreen,

 UseWaitCursor = True

label1: Text = Trigonometric Functions,

18

 AutoSize = False, Dock = Fill, TextAlign = MiddleCenter,

 Font.Name = Times New Roman, Font.Size = 32, Font.Bold = True

Composite properties are marked in the Properties window with a “+”

mark to the left of the name (in Fig. 1.5, the Padding and Size properties contain

the “+” marks). Clicking on the “+” mark displays all the properties of the se-

lected composite property, and the “+” mark changes to “–” mark. Clicking on

the “–” mark collapses the list of properties of the composite property.

The previous property setting listing demonstrates another notation used: if

a property needs to be cleared, the italic text “empty string” is used as its value.

The Boolean property values use the constants True and False that start

with a capital letter (as opposed to the C# keywords true and false), because this

is how Boolean constants are specified in the Properties window.

The Properties window uses sub-panels to set some anchoring or align-

ment properties (such as Dock or TextAlign). To display such panels, use the but-

ton that appears when the corresponding property is selected. In these panels,

you need to select one or several elements located in the required position (left,

right, center, etc.); the result of the selection will be displayed in the Properties

window as plain text (for example, Bottom or MiddleCenter). Although these

actions are intuitive, they are usually provided with additional explanations in

the description of example projects.

In some cases, it is convenient to use a special dialog box to set a property.

If a property has such a dialog box, then, when the property is selected in the

Properties window, a button is displayed to the right of it, which allows you

to call a dialog box (an example of such a property is Font).

1.4. Defining event handlers

All controls have not only a set of properties, but also a set of events that

can be assiciated with methods called event handlers. The list of handlers for the

selected control or group of controls is displayed in the Properties window in

the Events mode (see Fig. 1.5); to switch to this mode, press the fourth button

 on the toolbar of the Properties window. The list of events, like the list of

properties, can be ordered in two ways: by category and by name (in alphabeti-

cal order).

Double-clicking on the empty input text box next to the name of the re-

quired event automatically creates a template for the event handler. Any event

handler for any control is a method of the form on which the control is located.

All examples use the default names of the handler methods provided by Visual

Studio to make it easy to determine which control and event type the handler is

associated with.

The handler texts are shown in listings whose headings end with the word

“handler”, for example (this is a copy of the event handler from Section 4.1):

19

Form1.MouseDown handler
private void Form1_MouseDown(object sender, MouseEventArgs e)

{

 button1.Location = new Point (e.X - button1.Width / 2,

 e.Y - button1.Height / 2);

}

The text that you should add to the automatically generated handler method

template is in bold. Sometimes program fragments are provided with comments,

although more often explanations are given in the main text of the example or in

a special Comment section.

If you need to use an existing method as a handler, then just select the name

of this method in the drop-down list next to the event name in the Properties

window (the expanding button appears near the selected event).

Since, when developing programs in Visual C#, you need to have a clear

understanding of how event handlers are created and used, a special project

EVENTS (Chapter 4) is devoted to this topic. Connecting a handler to multiple

events is discussed in detail in Chapter 6.

1.5. Making changes to the program text

When developing projects, changes are usually made to the text of existing

handlers. If the changes are significant and cover the entire text of the handler,

then its new full text is shown, in which the added lines or line fragments are

highlighted in bold and removed lines are strikethrough, for example (this han-

dler is a copy of the handler from Section 22.7):
private void Form2_FormClosed(object sender,

 FormClosedEventArgs e)

{

 Form1 f = MdiParent as Form1;

 if (MdiParent.MdiChildren.Length == 1)

 (MdiParent as Form1).window1.Visible = false;

 f.window1.Visible = f.close2.Enabled = f.resize2.Enabled =

 f.zoom2.Enabled = false;

}

If the changes are insignificant and the handler is large enough, then it is

simply indicated which statements need to be added or replaced, for example:

Add the following statement to the zoom1_CheckedChanged method:

(MdiParent as Form1).zoom2.Checked = zoom1.Checked;

Change the last statement in the Form2_FormClosed method as follows:
f.window1.Visible = f.close2.Enabled = f.resize2.Enabled =

 f.zoom2.Enabled = f.zoom2.Checked = false;

If the place of addition is not specified, then statements should be appended

to the end of the method.

20

You can go to an existing handler to modify it either by moving through the

text of the file or using the Properties window by double-clicking on the text

box with the name of the required handler.

Changes to the program code that are not associated with a specific handler

are described in a similar way, for example:

Add the field to the description of the Form1 class

private Form2 form2 = new Form2();

Add the statement to the constructor of the Form1 class:

AddOwnedForm(form2);

When typing and editing program code, you should use the additional fea-

tures of the Visual Studio editor. Let us describe some of them.

1. If you type the name of an object (for example, button1) and a period “.”

after it, then a list of all methods and properties that this object has will appear

on the screen, and to quickly select the desired method, you just need to type its

first few characters. To insert the name of the selected method or property into

the program code, press the Enter, Tab or Spacebar keys. The list of methods

and properties can also be called explicitly by pressing the Ctrl+Spacebar key

combination.

2. After typing the method name and parenthesis “(”, a prompt appears on

the screen with a short description of this method and a list of all its parameters.

If the method is overloaded, that is, it can be called with a different set of pa-

rameters, then you can browse all of its overloaded versions by pressing the keys

Up () and Down (). You can also press Ctrl+Shift+Spacebar to show this hint.

3. It is convenient to use bookmarks to quickly jump to the desired piece of

code. To set/clear a bookmark on the current line of the program code (that is,

the line containing the keyboard cursor named caret), press Ctrl+K and then

again the same Ctrl + K key combination. To go to the next or previous book-

mark, press Ctrl+K and then Ctrl+N or Ctrl+P, respectively. You can also use

the Edit | Bookmarks menu group and speed buttons in the

Text Editor panel.

4. If you need to comment out any piece of code, then just select it and

press Ctrl+K and then Ctrl+C. In order to uncomment a commented out a piece

of code, you need to select it and press Ctrl+K and then Ctrl+U. If you need to

comment out or uncomment one line, then it is enough to place the caret on it

(instead of selecting it) and then press the indicated key combinations. Instead of

shortcut keys, you can use the speed buttons in the Text Editor panel.

5. The editor of the Visual Studio environment has rich search and replace

tools. These tools are described in detail in Comment 2, Section 9.5.

1.6. Application launch

Each stage of project development is described in a separate section of the

chapter connected with that project. Each section begins with a description of

21

the steps involved in changing the project. This is followed by a paragraph be-

ginning with the Result word. This paragraph describes how the new version of

the program will work. The presence of the Result paragraph is a sign that the

modified project can be compiled and run (to do this, just press the F5 key or the

button).

If the program code contains syntax errors, then messages about these er-

rors appear in the Error List window, which becomes active. In order to go to

the program line in which the first syntax error was found, just press the Down

() key (as a result, the message about the first error will be highlighted) and

then press Enter. Alternatively, you can double-click on the line with the error

message.

When compiling a program in the Visual Studio environment, two envi-

ronment settings play an important role. These settings are located in the Pro-

jects and Solutions group of the Options window (this window is invoked by

the Tools | Options... menu command). The first setting is in the General sec-

tion; this is the Always show Error List if build finishes with errors checkbox

that must be selected. The second setting is in the Build and Run section; this is

the On Run, when build or deployment errors occur drop-down list in which

the Do not launch option should be selected.

If the Result paragraph is followed by a paragraph marked with the Error

word, it means that the program, despite successful compilation, will not work

quite correctly, and additional corrections must be made to it (this allows you to

draw attention to typical errors that can occur in similar situations). If the Result

paragraph is followed by a paragraph marked with the Disadvantage word, then

this means that the program is working correctly and doing what is required, but

it has interface defects, that is, it is inconvenient to use. As a rule, immediately

after the description of the error or disadvantage , the way of correcting them is

indicated, although sometimes the correction is postponed until the next section.

22

2. Console application: DISKINFO project

The DISKINFO project introduces techniques for developing console ap-

plications. We describe the structure of a console application and the namespac-

es connected to it. Formatted output is discussed, in particular the use of escape

sequences. The DriveInfo, StringBuilder, and Environment classes are described. Al-

so we examine issues related to the use of command line arguments.

2.1. Creating a console application

When creating a new console application project, you should follow almost

the same steps as when creating a Windows application project (see Section 1.1).

The only difference is specifying a different project template in the New Project

window: for a console application, select the Console App (or Console Appli-

cation) template.

The created project contains the Program.cs file, which will be loaded into

the editor:

Program.cs
using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace DISKINFO

{

 class Program

 {

 static void Main(string[] args)

 {

 }

 }

}

The first five directives in the Program.cs file contain the names of the

namespaces with most commonly used standard classes (see Comment 1). Due

to these directives, class names can be used in the program code without speci-

fying namespace they belong to (for example, instead of System.Console, you can

simply write Console).

The Main method is the starting point for program execution. Its args pa-

rameter allows you to get information about the command line arguments speci-

23

fied when launching this program (the use of the args parameter is demonstrated

in Section 2.3).

Add new statements to the Main method:

Console.WriteLine("DISKINFO program\n");

Console.WriteLine("\nPress <Enter> to end the program...");

Console.ReadLine();

Result. When the program starts, a special console window appears on the

screen, which is used for data input-output in text mode. The console window

contains the following text:
DISKINFO program

Press <Enter> to end the program...

After the program terminates, the console window is closed immediately.

To give opportunity to acquaint with the contents of the window, a call to the

ReadLine method of the Concole class has been added to the program (see the last

statement). This method is intended for input a string, and the sign of comple-

tion of the input is the pressing of the Enter key. Therefore, until you press En-

ter, the console window will remain on the screen. The string returned by the

ReadLine method is not used in the program, so there is no need to store it in any

variable.

Comments
1. Let us give a brief description of the namespaces automatically connect-

ed to our application (see the first five directives). The System namespace is the

primary namespace for the .NET Framework standard library; it contains class

definitions that are needed in almost any program. In particular, it defines the

Concole class, which provides input-output for the console window. The Sys-
tem.Collections.Generic namespace contains generic collection classes. Generic

classes were introduced in .NET 2.0; the way of implementing collections

based on generics allows you to specify when declaring a collection what type

of data it will contain (an example of using a generic collection class is given

in Section 11.1). The System.Linq namespace allows you to use LINQ queries in

your program to handle various data sequences including arrays and collec-

tions (an example of using LINQ queries is given in Section 19.3). The Sys-
tem.Text namespace contains various classes and enumerations for handling text

data; in Section 2.2, we will use the StringBuilder class defined in this

namespace. The System.Threading.Tasks namespace contains classes for includ-

ing parallel and asynchronous code into a program (these classes will not be

used in the book).

2. The \n combination used in string constants is one of the escape se-

quences that can be specified in string expressions. This combination denotes

character with code 10 (a new line). Some other escape sequences are:

 \\ (character “\”),

24

 \" (double quote),

 \' (single quote),

 \0 (character with code 0),

 \r (carriage return – character with code 13),

 \b (character with code 8 generated by the Backspace key),

 \t (tabulation – character with code 9),

 \uN (Unicode character with hexadecimal code N).

In the escape sequence \uN, code N consists of 4 hexadecimal digits and

can be 0000 to FFFF; for example, the character \u0041 denotes the Latin let-

ter A (code 65).

3. If you run the console application not in Debug mode, but in Release

mode (by pressing Ctrl+F5 instead of F5), then, when it finishes, the text ap-

pears in the console window “Press any key to continue...” and the window

will be closed only after pressing an arbitrary key. Thus, in this mode there is

no need for the Console.ReadLine() statement (moreover, if this statement is pre-

sent, to close the application in Release mode, you will first have to press En-

ter, and then some arbitrary key). However, when you run the resulting exe-file

directly from Windows (not from Visual Studio), the application runs in the

same way as in Debug mode, that is, the “Press any key to continue...” mes-

sage does not appear.

4. Starting from version C# 6.0 (.NET Framework 4.6, Visual Studio

2015), you can omit the name of the Console class when calling its methods if

you first specify a special version of the using directive:
using static System.Console;

After the using static text, you must specify the fully qualified name of the

class (that is, the name that includes the namespace), which you can later omit

when calling its methods (for example, instead of the Console.WriteLine() or

Console.ReadLine() statement, you can just specify WriteLine() or ReadLine()).

2.2. Receiving the information about current disk

At the top of the Program.cs file, add the statement

using System.IO;

Add a new DInfo method to the Program class:

static void DInfo(string path)

{

 string none = "---",

 d = path[0].ToString().ToUpper();

 DriveInfo di = new DriveInfo(d);

 StringBuilder s = new StringBuilder(40);

 s.AppendFormat(" {0,-4}", d);

 if (di.DriveType != DriveType.NoRootDirectory)

25

 {

 s.AppendFormat(" {0,-9}", di.DriveType);

 if (di.IsReady)

 s.AppendFormat("{0,14:N0} {1,14:N0}", di.TotalSize / 1024,

 di.TotalFreeSpace / 1024);

 else

 s.AppendFormat("{0,14} {0,14}", none);

 }

 else

 s.AppendFormat(" {0,-9}{0,14} {0,14}", none);

 Console.WriteLine(s);

}

Change the Main method as follows:
static void Main(string[] args)

{

 Console.WriteLine("DISKINFO program\n");

 Console.WriteLine(" Disk Type Size (K) Free (K)");

 Console.WriteLine(new String('=', 40));

 DInfo(Environment.CurrentDirectory);

 Console.WriteLine("\nPress <Enter> to end the program...");

 Console.ReadLine();

}

Result. When the program is launched, information about the current disk

is displayed in the console window, for example:
DISKINFO program

 Disk Type Size (K) Free (K)

==

 D Fixed 720 759 804 14 519 580

Press <Enter> to end the program...

Comments
1. The DInfo method takes a path string as a parameter, from which only the

first character is used (it is assumed that this character is a drive letter). Since

path[0] is a char expression, to be able to use this expression as a string parame-

ter to the constructor of the DriveInfo class, we must explicitly convert it to

string using the ToString method. The resulting single-character string is then

converted to uppercase using the ToUpper method of the string class.

2. The DriveInfo class is used to retrieve disk information. This class is in-

troduced in .NET 2.0 Framework and defined in the System.IO namespace. To

create an object of the DriveInfo class, just call its constructor specifying the let-

26

ter of the required drive. The DriveType property (of DriveType enumeration

type) allows you to determine the type of disk media, even if the disk is una-

vailable (among the possible values of the DriveType enumeration, we indicate

Removable, Fixed, Network, and CDRom). For an available disk, we can deter-

mine its size in bytes (the TotalSize property of long type), the size of free space

in bytes (the TotalFreeSize property of long type), and its label (the VolumeLabel
property of string type; this property is available for both reading and writing).

Note that the long type used for the TotalSize and TotalFreeSize properties al-

lows numbers to be stored in the range from –9 223 372 036 854 775 808

to 9 223 372 036 854 775 807 (thus, it is possible to determine the size of

a disk containing more than 9 million terabytes).

3. When forming a string with information about the disk, the s object of

the StringBuilder class was used. This class is defined in the System.Text
namespace and allows you to more efficiently (compared to the string class)

perform string operations. In the constructor of the StringBuilder class, we speci-

fied the capacity of the generated string (that is, its maximum possible size of

40 characters), but this does not mean that the s object cannot contain larger

strings: if the size of the actual string stored in an object of StringBuilder type

exceeds its capacity, the capacity is automatically doubled. Explicit indication

of capacity in the constructor avoids unnecessary memory allocation and

deallocation.

An important feature of objects of StringBuilder type, in comparison with ob-

jects of string type, is the availability of their symbols not only for reading, but

also for writing. In addition, any actions to change a string of StringBuilder type

are performed on the same string and do not lead to the creation of a new

(changed) string, as it happens in the string class methods that modify string da-

ta. The AppendFormat method used in the program adds new data to the previ-

ous content of the string and formats the data.

4. When formatting the data, special formatting settings were used, which

generally have the form {ind,width:spec}, where ind defines the index of the for-

matted element in the subsequent list of parameters (indexing is carried out

from 0), width defines the minimum output field width for the formatted element

and the way it is aligned within this field (if width is positive, then alignment is

performed on the right, if negative, then on the left). The spec attribute speci-

fies the format specifier for this element. The N specifier used in the program

allows to display a number with spaces (thousands separators); the value 0

specified after it means that the number of fractional characters is zero (by de-

fault, N format displays two fractional characters). Let us list some other format

specifiers:

 C (currency format),

 D (decimal integer format),

 X (hexadecimal integer format),

27

 E (exponential number format),

 F (fixed-point number format),

 P (percentage format).

Format specifiers can be used in many methods related to string formatting,

such as the Format method of the string class and the Write and WriteLine methods

of the Console class. Of the attributes included in format settings, only the ind

attribute is required; it is permissible to specify several identical values for the

ind attribute if you want to display the same data item several times (see the last

two calls to the AppendFormat method in the DInfo method definition. If the

width attribute is absent, the minimum width of the output field is used to dis-

play the formatted item. If the spec attribute is missing, then the default format-

ting option is selected (this option corresponds to G format specifier). If there is

no width, no leading comma (,) is specified; if there is no spec, no leading co-

lon (:) is specified.

5. Instead of explicitly specifying a string containing 40 characters “=”

(equal sign), we used a version of the string constructor with two parameters

(c, n). This constructor allows creating a string of the specified length n with

identical characters c.

6. To determine the current disk, the CurrentDirectory property of the Envi-
ronment class was used, which allows you to get the current directory for this

application and is available for both reading and writing. Other useful proper-

ties of this class are CommandLine, which returns a string with the full name of

the running exe-file followed by command line arguments, SystemDirectory,

which returns the full name of the Windows system directory, a set of proper-

ties that allow you to get information about the computer, user, and operating

system: MachineName, UserName, OSVersion, Version (the last property returns

the full .NET Framework version in use).

There is also an array property GetCommandLineArgs of string[] type, the first

element of which (with index 0) contains the full name of the exe-file and each

next element contains the next command line argument (thus, the

GetCommandLineArgs property is a CommandLine string parsed into separate

words).

In addition, the Environment class allows you to get and change the values

of various environment variables defined in the operating system. To do this, it

has the following methods: GetEnvironmentVariables (returns an array of all en-

vironment variables as a name–value string pair), GetEnvironmentVariable(name)
(returns a string value for an environment variable named name or null if the

specified environment variable does not exist), SetEnvironmentVariable(name,
val) (sets an environment variable named name to the new string value val). If
the variable with the name specified in the SetEnvironmentVariable method does

not exist, then it is created; if val is an empty string or null, then the existing

variable with the given name is destroyed.

28

7. Starting with C# 6.0, you can format expressions included in strings

without using the special Format methods described in Comment 4: you just

need to include the required expression in the string itself, enclose it in curly

braces, and provide optional formatting attributes using the rules described in

Comment 4. Strings formatted in this way are called interpolated strings; be-

fore their opening double quote ", you must specify the $ symbol. As an exam-

ple, we will give a part of the DInfo function (a block of statements after the

header of the external if statement), which uses interpolated strings:

s.Append($" {di.DriveType,-9}");

if (di.IsReady)

 s.Append($"{di.TotalSize /

 1024,14:N0} {di.TotalFreeSpace / 1024,14:N0}");

else

 s.Append($"{none,14} { none,14}");

2.3. Using command line arguments

Modify the Main method in the Program.cs file as follows:
static void Main(string[] args)

{

 Console.WriteLine("DISKINFO program\n");

 Console.WriteLine(" Disk Type Size (K) Free (K)");

 Console.WriteLine(new String('=', 40));

 if (args.Length == 0)

 DInfo(Environment.CurrentDirectory);

 else

 foreach (string d in args)

 DInfo(d);

 Console.WriteLine("\nPress <Enter> to end the program...");

 Console.ReadLine();

}

Result. If one or more drive names are specified as command line argu-

ments, information about these drives is displayed (command line arguments

must be separated from each other by spaces). If arguments are not specified,

then information about the current disk is displayed. To set command line ar-

guments in Visual Studio, perform the Project | DISKINFO Properties…

menu command, select the Debug section in the project properties tab loaded

into the editor and enter the command line arguments in the Command line ar-

guments text box. So, if you specify d e f z as the command line arguments,

then, as a result of the program execution, a text similar to the one below will be

displayed:

29

DISKINFO program

 Disk Type Size (K) Free (K)

==

 D Fixed 720 759 804 14 519 580

 E Fixed 2 930 265 084 16 317 180

 F CDRom --- ---

 Z --- --- ---

Press <Enter> to end the program...

In the Windows environment, the program with parameters can be

launched, for example, from the Start menu using the Run… command:
D:\Apps\DISKINFO\bin\Debug\DISKINFO.exe d e f z

If the program is launched using a shortcut (that is, a special file with the

.lnk extension), then its command line arguments can be set in the shortcut

properties window, which is invoked by the Properties command of the context

menu of the shortcut. In the properties window, go to the Shortcut tab and spec-

ify the required arguments in the File (or Object) text box.

Disadvantage. If you specify, as one of the command line arguments,

a string that does not start with a Latin letter, then an error will occur during

program execution.

Correction. In the DInfo method, before the statement
DiveInfo di = new DriveInfo(d);

add the following fragment:

if (d[0] < 'A' || d[0] > 'Z')

 return;

Result. Now the program does not process parameters that do not start with

a Latin letter.

Remark. Another possible way to catch such an error is to explicitly handle

the resulting exception in a try-catch block (see Chapter 3). However, if it is

possible to correct the error without involving an exception handling mecha-

nism, then this opportunity should be used, since exception handling is very

slow.

Comment
To determine the number of command line arguments, just use the Length

property of the args array. To iterate over all the arguments, we used a foreach

loop, whose variable d gets the value of the next element of the args array at

each iteration. Note that you cannot modify array elements using a foreach loop.

30

3. Exception handling: EXCEP project

The EXCEP project introduces techniques for handling exceptions. The

structure of try blocks is described and features related to the use of nested try

blocks are demonstrated. An overview of the exceptions associated with arith-

metic operations is provided. The checked and unchecked statements are dis-

cussed. The Parse method of converting a string to a number and the throw

statement of throwing an exception (including repeated) are considered. A ver-

sion of a try block using a finally clause is described.

3.1. Handling a specific exception and exception groups

This example, like the previous one, is related with a console application.

Create a template project for the console application (see Section 2.1) and

change the description of the Program class in the Program.cs file as follows:
class Program

{

 static void M1(int x, int y, int z)

 {

 try

 {

 int a = checked((int)Math.Pow(x, y));

 Console.WriteLine("x ^ y / z = {0}", a / z);

 }

 catch (DivideByZeroException)

 {

 Console.WriteLine("DivideByZero Exception");

 }

 Console.WriteLine("M1 finished");

 }

 static void M2(int x, int y, int z)

 {

 try

 {

 M1(x, y, z);

 }

 catch (ArithmeticException)

 {

 Console.WriteLine("Arithmetic Exception");

31

 }

 Console.WriteLine("M2 finished");

 }

 static void Main(string[] args)

 {

 Console.Write("x = ");

 int x = int.Parse(Console.ReadLine());

 Console.Write("y = ");

 int y = int.Parse(Console.ReadLine());

 Console.Write("z = ");

 int z = int.Parse(Console.ReadLine());

 M2(x, y, z);

 Console.ReadLine();

 }

}

Result. For three input integers x, y, z, the program calculates the expres-

sion xy / z and handles the resulting exceptions (to exit the program, press Enter).

Let us describe the various cases that may arise during program execution.

Case A. Handling valid values. The calculations are successful; no excep-

tion handlers are invoked:
x = 9

y = 2

z = 3

x ^ y / z = 27

M1 finished

M2 finished

Case B. Division by zero. The handler for the try block of the M1 method

is activated, which handles an exception of DivideByZeroException type. After

that, the program execution continues with the statement following the given try

block:
x = 1

y = 1

z = 0

DivideByZero Exception

M1 finished

M2 finished

Case C. Integer overflow. Attempting to raise the number 10 to the power

of 10 (and then convert the result to the integer type) throws an

OverflowException. Since the catch clause of the try block of the M1 method does

not handle OverflowException, it immediately moves to the next-level try block

handler (that is, the catch clause of the try block of the M2 method). Here, the

32

OverflowException is handled because it is a descendant of an ArithmeticException,

which is the ancestor of all exceptions thrown by arithmetic errors. After that,

program execution continues with the statement following the try block of the

M2 method:
x = 10

y = 10

z = 1

Arithmetic Exception

M2 finished

Case D. Invalid character input. After input an invalid character (for ex-

ample, an asterisk *), the program execution is immediately interrupted, a return

to the Visual Studio environment occurs, and the statement whose execution led

to an exception is highlighted in the program code (in our case, this will be the

first of the Main method statements containing a call to the Parse method). This

behavior is due to the fact that the Main method does not handle the

FormatException that was thrown and therefore activates the default exception

handling mode.

In this situation, two actions are possible:

1. Immediately interrupt the execution of the program by pressing the

Shift+F5 key combination or the button with the image of a red

square .

2. Continue the execution of the program, skipping the erroneous state-

ment and possibly several next statements. To do this, click on the yel-

low arrow located near the erroneous statement and drag it to the

statement from which you want to continue the program execution, then

press the F5 key or the button with the green triangle . You can also

execute the program step by step by clicking the or buttons (or

pressing F11 or F10, respectively). Any of these buttons executes the

current statement (that is, the statement pointed to by the yellow arrow).

The difference between them is that if the current statement is a function

call and the code for this function is available, then the button (Step

Into button) provides a jump to the beginning of this function, and the

button (Step Over button) immediately executes the function and

moves to the next statement after call the function.

Remark. The behavior of the program described in case D corresponds to

the default exception handling in Debug mode (that is, when the program is

started with the F5 key). If the program is launched in the Release mode (that is,

using the Ctrl+F5 key combination), then, when an exception occurs, a dialog

box appears on the screen with information about the occurred exception and

two buttons: Continue (to continue the program execution) and Quit (to termi-

nate the program immediately).

33

Comments
1. The Parse method used in the program for the int type allows to convert

the specified string to the int type (for such a conversion to be successful, the

string must contain a representation of some integer, possibly padded with

spaces on the left and right). A similar method is available for other numeric

types, in particular, for the double type. It should be note that when converting

a string to a real number, the decimal separator character is determined from

the settings of the Windows operating system; therefore, in a program running

in the Russian version of Windows, a comma must be input as the decimal sep-

arator. For more information on regional settings and how to change them, see

Comment 3 in Section 6.4 and the comment in Section 7.1.

If the parameter of the Parse method cannot be converted to the specified

numeric type, then a FormatException is thrown (see case D above).

2. It is impossible to throw an OverflowException when performing opera-

tions with real numbers (that is, numbers of double type): if the resulting num-

ber turns out to be too large, a special value double.PositiveInfinity of double type

(positive infinity) will be returned; you can perform various actions with this

value in the same way as with ordinary numbers. There are two other special

real values: double.NegativeInfinity (negative infinity) and double.NaN (not a num-

ber). The standard math functions defined in the Math class can return both or-

dinary and special numeric values. For example, Math.Sqrt(–1) (square root

of –1) will return double.NaN, and Math.Log(0) (natural logarithm of zero) will

return double.NegativeInfinity.

In our program, we use the Pow function from the Math class, which allows

us to perform exponentiation, and the overflow described in case C occurs after

calculating this function when trying to convert the result to the int type (as

a result, we get an integer overflow).

3. Integer overflow does not always lead to an exception. With the standard

project settings, no exception occurs in this situation and an integer value that

is too large is truncated by discarding the extra high bytes. If this behavior with

integer overflow is undesirable (as in our case), then you can enable explicit

overflow control by enclosing the “dangerous” expression in a checked di-

rective with parentheses (see the M1 method). This directive can be used to pro-

tect not only expressions, but also a group of statements; in this situation, its

syntax is as follows:
checked {statements}

However, keep in mind that if there are method calls among the specified

statements, then there will be no integer overflow control inside these methods.

There is also a paired unchecked directive that disables integer overflow

control. Due to disabled control, operations on integer data are performed

much faster.

34

You can also control integer overflow at the level of the entire project by

changing its settings. To do this, execute the Project | <project name> Prop-

erties… menu command, go to the Build section in the appeared tab with the

project name, click the Advanced button, and set the Check for arithmetic

overflow/underflow checkbox.

3.2. Handling any exception

Modify the Main method in the Program.cs file as follows:
static void Main(string[] args)

{

 try

 {

 Console.Write("x = ");

 int x = int.Parse(Console.ReadLine());

 Console.Write("y = ");

 int y = int.Parse(Console.ReadLine());

 Console.Write("z = ");

 int z = int.Parse(Console.ReadLine());

 M2(x, y, z);

 }

 catch

 {

 Console.WriteLine("Other exception");

 }

 Console.ReadLine();

}

The program now contains three nested try blocks.

Result. In any of cases A, B, C discussed in Section 3.1, the result of the

program will be the same. Case D (input invalid character) will display the fol-

lowing text:
x = *

Other exception

After that the program will wait for Enter to be pressed to end its execution.

Thus, no exception will now cause the program to terminate.

Disadvantage. The information displayed on the screen does not allow you

to determine which exception occurred during the program execution.

Correction. Change the catch clause in the Main method to the following:

catch(Exception ex)

{

 Console.WriteLine(ex.GetType().Name + ":\n " + ex.Message);

}

35

Result. Now, if an invalid character is input, more detailed information will

be displayed:
x = *

FormatException:

 Input string was not in a correct format.

Comment
In the last version of the program, a handler was defined for the Exception,

which is the common ancestor of all exception classes. Therefore, it is activat-

ed when some exception is thrown that was not handled in the previous try

blocks. Using the ex variable of Exception type allows you to access the meth-

ods and properties of the thrown exception: the name of the exception class can

be obtained using the expression ex.GetType(). Name (the GetType method is

called, which returns an object of Type type, and the Name property is called for

this object); a brief description of the error is available using the Message prop-

erty of the ex object.

3.3. Re-throwing a handled exception

Append the catch clause for the try block of the M2 method as follows:
catch (ArithmeticException)

{

 Console.WriteLine("Arithmetic Exception");

 throw;

}

Result. In any of cases A, B, D, the result of the program will be the same.

Case C (integer overflow) will display more detailed information:
x = 10

y = 10

z = 1

Arithmetic Exception

OverflowException:

 Arithmetic operation resulted in an overflow.

This is because the throw statement added to the catch clause of the M2

method re-throws the exception after it handling. The re-thrown exception was

finally handled in the catch clause of the Main method.

Comments
1. The throw statement is also used to explicitly throw an exception in

a program. For example, if an integer parameter n of some method M can

only take values from 1 to nMax, then, if this condition is violated,

an ArgumentOutOfRangeException should be thrown in the method M:
if (n < 1 || n > nMax)

 throw new ArgumentOutOfRangeException("n");

36

The used version of the constructor of the ArgumentOutOfRangeException

class allows you to specify the name of the erroneous parameter in the Message

property of the thrown exception. In our case, this property will contain the

text: Specified argument was out of the range of valid values. Parameter

name: n. An example of using the throw statement is also given in Sec-

tion 23.1.

2. A try block can contain multiple catch clauses to handle different types

of exceptions. There is also an additional try block clause named finally, which

is located after all catch clauses and contains code to release previously allocat-

ed resources, close files, and perform other finishing actions. The finally clause

is always executed, both after normal completion of statements in the try block,

and when an exception is thrown, even if this exception was not handled in the

previous catch clauses. Versions of a try block with the finally clause are given

in Sections 21.5–21.6.

37

4. Events: EVENTS project

The EVENTS project introduces the basic techniques for developing

events-driven applications. We demonstrate how to associate an event with

a handler (in design mode and programmatically), how to disconnect a handler

from an event, and how to reconnect it later. The Random class and properties of

visual controls related to their size and position on the screen are considered. An

overview of the structure of a Windows graphical application and its controls is

given.

4.1. Connecting an event to a handler

The EVENTS project is the first graphical application discussed in the

book, so we will describe the steps for its development in more detail (see also

Chapter 1).

After creating a new project of the Windows Forms Application type,

place a Button control on Form1 using the Toolbox window (the easiest way is to

select the Button control from the All Windows Forms group, which contains all

controls in alphabetical order). The added button will be automatically named

button1.

Set the properties of Form1 and button1 (to do this, use the Properties win-

dow):

Properties
Form1: Text = Bouncing Buttons,

 StartPosition = CenterScreen

button1: Text = Close

Use Fig. 4.1 to adjust the form size and button position.

Fig. 4.1. Form1 view at the initial stage of development

38

Associate a handler with the Click event of the button1 control:

button1.Click handler
private void button1_Click(object sender, EventArgs e)

{

 Close();

}

To do this, select the button1 on the form, for example, by clicking on the

button with the mouse (as a result, markers will be displayed around the button,

as in Fig. 4.1, and the Properties window will be configured to display the but-

ton properties). Then select the Events mode in the Properties window (by

clicking on the button) and double-click on the empty text box to the right of

the Click label. As a result, the Form1.cs file with the description of the Form1

class will be loaded into the editor of the Visual Studio environment, and a tem-

plate for the Click event handler (the button1_Click method) will be added to this

file. Now, using the editor, you need to add the necessary statements to this

template (in our case, the Close method call). The automatically generated text

of the button1_Click method is shown in the listing in regular font, and the pro-

gram code that needs to be added to the method is shown in bold.

Similarly, create a MouseDown event handler for Form1:
Form1.MouseDown handler
private void Form1_MouseDown(object sender, MouseEventArgs e)

{

 button1.Location = new Point(e.X - button1.Width / 2,

 e.Y - button1.Height / 2);

}

Since this event should not be associated with a button, but with a form,

you must first select the form by clicking in its free area or on its title.

Result. After starting the program, the Bouncing buttons window with the

Close button appears on the screen. When you click anywhere in the window,

the button “jumps” to the specified location. The CenterScreen value of the

StartPosition property ensures that the window is centered on the screen. Clicking

the Close button exits the program and returns to Visual Studio.

Comments
1. The Close function is a method of the Form1 class inherited from the Form

ancestor class. Since the button1_Click event handler is also a method of the

Form1 class, you do not need to prefix the Close method with the name of the

form object for which this method is called.

2. In the Form1_MouseDown method, the value of the Location property of

the button is changed, so you must explicitly specify the object (button1) whose

property you want to change. The Location property is the Point structure con-

sisting of two integer fields, X and Y. To change it, a new instance of the Point

39

type is created with fields that are defined using the X and Y fields of the pa-

rameter e (these fields contain the coordinates of the position at which the

mouse button was pressed). The Width and Height properties of the button are

used to center the button relative to the mouse cursor. Pay attention to the new

keyword, which is required when calling constructors of structures and classes.

3. The position and size of any visual control (that is, a descendant of the

Control class), including the form itself, can be determined and changed using

a set of properties. The above-mentioned Location property, as well as the Left
and Top properties of int type, are responsible for the position. These properties

(like the X and Y fields of the Location property) determine the coordinates of

the upper-left corner of the form control relative to the upper-left corner of the

client area of a form (the client area does not include the title bar and frame of

a form). In the case of a form, the Location, Left, and Top properties define the

coordinates of the upper-left corner of the form relative to the upper-left corner

of the screen.

There are also the Right and Bottom properties of int type. which determine

the coordinates of the lower-right corner of the visual control. All coordinates

are in pixels.

The Size property is responsible for size of controls; it is a structure of Size

type with the Width and Height fields of int type. There are also the Width and

Height properties of int type.

4. How does the program store information about the controls placed on

the form and how does it find out the values of the properties set in the Proper-

ties window?

All this information is saved in a text file associated with the form designer

(in our case, this file is named Form1.Designer.cs). Although it is usually not

necessary to manually correct it, it is useful to familiarize yourself with its con-

tents by loading this file into the editor (to do this, you just need to double-

click on the file name in the Solution Explorer window). The

Form1.Designer.cs file contains the part of the Form1 class description that is

directly related to visual design. In particular, the end of this file contains a list

of all the controls placed on the form. In our program, such a control is a but-

ton:
private System.Windows.Forms.Button button1;

Further, if we expand the hidden section, which is marked with the Win-

dows Form Designer generated code text, by clicking on the + sign, we will

see a piece of code containing all the property settings that we made using the

Properties window, for example:
this.button1.Text = "Close";

Note that changing these properties directly in the text of the

Form1.Designer.cs file will immediately affect the appearance of the form. So

if you change the above statement to the following

40

this.button1.Text = "CloseWin";

and switch to the form design mode (that is, go to the Form1.cs [Design] tab),

the button caption will change to CloseWin, and the same text will be specified

for the button’s Text property in the Properties window.

Thus, all actions associated with placing controls on the form and setting

their properties can be described in the program code. Visual tools such as the

Toolbox and Properties windows only speed up this process and make it more

intuitive.

5. How does the program know that the button1_Click method should be

called when the button1 button is clicked and the Form1_MouseDown method

should be called when the form is clicked?

Simultaneously with the creation of a template for the button1_Click method,

the name of the button1_Click method appears in the Properties window near

the Click event (you can verify this by returning to the form design mode, high-

lighting the button1 button and switching to the Events mode in the Properties

window by clicking the button). In other words, the value of the Click event

for the button1 control becomes button1_Click. In the Form1.Designer.cs file,

the corresponding action is represented as the following statement (it should be

noted that this statement contains many redundant elements – just compare it

with the statements for connecting handlers, which are used further, in Sec-

tion 4.3):
this.button1.Click += new System.EventHandler(this.button1_Click);

All control events displayed in the Property windows in Events mode are

empty by default, that is, they are not associated with any handlers.

If some event is associated with a handler (in our case, the Click event is as-

sociated with the button1_Click method), then when the corresponding event oc-

curs (for example, when a button is clicked), the control calls the handler

method that is connected to it. In this case, the first parameter of the handler

(sender) allows to determine which control has called this handler, and the se-

cond parameter (e) contains additional information about the event.

6. Where are the statements from which the program execution begins?

Any C# program begins by executing a start method, which by default is

named Main. In the Windows Forms template, the Main method is located in

the Program.cs file. This file is automatically generated and, like the

Form1.Designer.cs file, usually does not require editing. If we load the Pro-

gram.cs file into the editor, we can see that the Main method contains three

statements, the most important of which is the last one:
Application.Run(new Form1());

This statement creates an instance of the application main form (of Form1

type) and starts an event loop that runs until the main form is closed. Closing

the main form exits the event loop and exits the application.

41

4.2. Disconnecting a handler from an event

Add another button to the form (it will be named button2) and make its Text
property empty using the Properties window (Fig. 4.2).

Fig. 4.2. The final form of Form1 for the EVENTS project

In the Form1.cs file, at the beginning of the Form1 class description (before

the public Form1() constructor), add the following description of the object r:
private Random r = new Random();

Define event handlers for the MouseDown and Click events for button2:

button2.MouseMove and button2.Click handlers
private void button2_MouseMove(object sender, MouseEventArgs e)

{

 if (ModifierKeys == Keys.Control)

 return;

 // - if the Ctrl key is pressed,

 // then exit the handler immediately

 button2.Location =

 new Point(r.Next(ClientRectangle.Width - 5),

 r.Next(ClientRectangle.Height - 5));

}

private void button2_Click(object sender, EventArgs e)

{

 button2.Text = "Change";

 button2.MouseMove -= button2_MouseMove;

}

Result. A “wild” button with an empty title does not allow to click on itself

running away from the mouse cursor. In order to “tame” it, you need to move

the cursor to it while holding down the Ctrl key. After clicking on the wild but-

ton, it is tamed: the title Change appears on it and it stops running away from

the mouse cursor. It should be noted that you can also tame a button using the

42

keyboard by selecting the button with the Tab key (or arrow keys) and pressing

the spacebar.

The tamed button does nothing yet. This will be corrected in Section 4.3.

Comments
1. This section demonstrates how to disconnect a handler method from an

event with which it was previously connected. To do this, use the operator -=

with the required event on the left and a handler that must be disconnected

from the event on the right.

2. To ensure a random movement of the “wild” button, the program uses an

object r of Random type (a random number generator), which allows generating

evenly distributed pseudo-random numbers. To create and initialize an object

of Random type, you can use two versions of the constructor: without parame-

ters and with the seed parameter of integer type. If the seed parameter is not

specified, then the random number generator is initialized with a value derived

from the current time (according to the computer clock). Random objects ini-

tialized with the same seed values generate the same sequence of random num-

bers.

To get a random number of int type, the Random class provides the Next
method, which has three versions: without parameters (returns a number in the

range from 0 to int.MaxValue, not including int.MaxValue), with one max parame-

ter (returns a number in the range from 0 to max, not including max) and with

two parameters min and max (returns a number in the range min to max, not in-

cluding max). The button2_MouseMove handler uses a version of the Next meth-

od with one parameter. There is also the NextDouble method without parame-

ters, which returns a random number of double type lying in the half-interval

[0, 1).

3. In the button2_MouseMove handler, the ClientWidth and ClientHeight proper-

ties are used. These properties of the form determine the width and height of

client area of the form (recall that the client area of the form does not include

its title and frame). Subtracting the number 5 ensures that the wild button is

always visible on the screen (at least partially).

4. Pay attention to how the button2_MouseMove handler checks whether the

Ctrl key is pressed. As mentioned in Section 4.1, additional information about

the occurred event is usually passed to the handler using the second parame-

ter e. For example, in the button2_MouseMove handler, this parameter (of the

MouseEventArgs type) allows to determine where the mouse cursor is currently

located (properties e.X and e.Y of int type) and whether any mouse button is

pressed (property e.Button of MouseButtons type). But the parameter e of

MouseEventArgs type does not contain information about the currently pressed

control keys. However, such information can be obtained using the static

ModifierKeys property of the Control class, which is the base ancestor of all visu-

al controls. Using this property, you can determine whether the Ctrl, Alt, Shift

43

keys are currently pressed, as well as any of their combinations. For example,

you can check if the Ctrl+Shift key combination is pressed using the following

condition (parentheses are required):
ModifierKeys == (Keys.Control | Keys.Shift)

5. Note that the field r in the Form1 class is not only described, but also ini-

tialized immediately (using the Random constructor without parameters). When

is this initialization performed? According to the rules of the C# language, ex-

plicitly specified initialization statements for all class fields are automatically

placed at the beginning of any class constructor. Thus, the field r will be initial-

ized at the beginning of the Form1’s constructor execution (before executing

the InitializeComponent() statement specified in the constructor body). Of course,

we can act differently: describe the field r of Random type without initializing it

and then add to the constructor the initialization statement:

private Random r;

public Form1()

{

 r = new Random();

 InitializeComponent();

}

It should also be noted that the private access modifier (meaning that this

field is private, that is, it is available only for methods of the Form1 class) can

be omitted, because, if a class member does not have an access modifier, this

member is automatically supplied with the private modifier. Nevertheless, we

will always specify access modifiers, as this makes the program code more de-

scriptive.

4.3. Connecting another handler to an event

In order for the “tamed” button to perform some actions when it is clicked,

we can add the required actions to the already existing button2_Click handler.

However, in this case, the handler must check whether the button is “wild” or

“tamed”. Let us do it differently: connect the Click event for the tamed button

with another handler. This approach will demonstrate a number of features as-

sociated with connecting and disconnecting handlers.

Create a new handler named button2_Click2 “manually”, without using the

Properties window. To do this, add a description of the new handler at the end

of the Form1 class description in the Form1.cs file (before the last two closing

curly braces “}”):

private void button2_Click2(object sender, EventArgs e)

{

 if (WindowState == FormWindowState.Normal)

 WindowState = FormWindowState.Maximized;

 else

44

 WindowState = FormWindowState.Normal;

}

Notice that all the lines are in bold in this listing. This means that you need

to type all of its text.

Also add new statements to the button2_Click method:

button2.Click -= button2_Click;

button2.Click += button2_Click2;

And add new statements to the Form1_MouseDown method:

if (button2.Text != "")

{

 button2.Text = "";

 button2.MouseMove += button2_MouseMove;

 button2.Click += button2_Click;

 button2.Click -= button2_Click2;

}

Recall that, if the place of addition is not specified, statements must be add-

ed to the end of the method.

Result. The tamed button now does useful work: clicking on it expands the

program window to full screen, and a new click restores the window to its origi-

nal state. If you click on the form (rather than any button), the Close button will

move to the mouse position and the tamed Change button will become wild

again, lose its title text, and start running away from the mouse (see Com-

ment 1).

Disadvantage. During program execution, a situation may arise when one

or both buttons will not be displayed on the form (if, for example, the buttons

were moved to a new location when the window was maximized and then the

window was returned to its original state).

Correction. Define an event handler for the SizeChanged event for Form1:

Form1.SizeChanged handler
private void Form1_SizeChanged(object sender, EventArgs e)

{

 if (!ClientRectangle.IntersectsWith(button1.Bounds))

 button1.Location = new Point(10, 10);

 if (!ClientRectangle.IntersectsWith(button2.Bounds))

 button2.Location = new Point(10, 40);

}

Result. Now, when the form is resized and its buttons are outside the client

area of the form, these buttons are moved to the explicit positions near the up-

per-left corner of the form (see Comment 2).

45

Comments
1. The new parts of the button2_Click and Form1_MouseDown methods show

that it is not enough to connect a new handler to an event; it is also necessary to

disconnect the old handler from the event. Several handlers can be connected

to the same event (for this, it is enough to apply the += operator to the event

several times), although such an opportunity for events of visual controls is

rarely used. When you explicitly connect handlers to an event, you must ensure

that the same handler is not connected to the event multiple times, since con-

necting a handler multiple times usually results in hard-to-find errors. This sit-

uation can be illustrated using our program by commenting out the if statement

in the Form1_MouseDown handler:
// if (button2.Text != "")

If now, after starting the program, you click on the form several times and

then “tame” the button2, then, when you click this button again, the form will

switch from the expanded state to the standard one and back several times. This

is because each click on the form attaches a new instance of the button2_Click

handler to the Click event of button2 and, when this button is clicked, each in-

stance of the handler is executed. The situation is further complicated by the

fact that it is impossible in the program to find out how many and which han-

dlers are currently connected to the event (and without knowing this, it is im-

possible to ensure that all handlers are disconnected from the event). So, the

explicit connection the handler to the event, as well as its subsequent discon-

nection, requires very careful programming.

2. To check the current position of the form controls, read-only properties

of Rectangle type were used: ClientRectangle returns a rectangle that defines the

client area of the form (or visual control), Bounds returns a rectangle that de-

fines the position of the visual control on the form (or the form on the screen).

The Rectangle structure has a number of properties (including Location, Size,

Left, Top, Width, Height, Right, Bottom) as well as several useful methods. For ex-

ample, the IntersectsWith method used in the Form1_SizeChanged method lets

you check if the intersection of two rectangles is non-empty (our program ex-

amines the intersection of the ClientRectangle of Form1 with the Bounds rectan-

gle for each of two buttons: button1 and button2).

46

5. Forms: WINDOWS project

The WINDOWS project introduces the specifics of applications that use

multiple forms and demonstrates various ways to customize the appearance of

forms and how they are displayed on the screen. Ways of interaction of different

forms of one application and, in particular, the problems associated with closing

non-modal subordinate forms are considered. Also we describe the settings for

dialog forms and methods for displaying standard dialog boxes.

5.1. Setting the visual properties of forms. Opening forms
in normal and modal mode

After creating the WINDOWS project, add two new forms to it (see Sec-

tion 1.2); new forms will automatically be named Form2 and Form3. Place two

buttons (with standard names button1 and button2) on Form1. Set the properties of

all forms and controls (see also Fig. 5.1–5.3):

Properties
Form1: Text = Main Window, MaximizeBox = False,

 FormBorderStyle = FixedSingle

Form2: Text = Subordinate window,

 StartPosition = Manual, ShowInTaskbar = False

Form3: Text = Dialog window, MaximizeBox = False,

 MinimizeBox = False, FormBorderStyle = FixedDialog,

 StartPosition = CenterScreen, ShowInTaskbar = False

button1: Text = Open subordinate window

button2: Text = Open dialog window

Fig. 5.1. The final view of Form1

Fig. 5.2. Form2 at the initial stage of development

47

Fig. 5.3. Form3 at the initial stage of development

Add two field declarations to the beginning of the Form1 class declaration:

private Form2 form2 = new Form2();

private Form3 form3 = new Form3();

Add two statements to the constructor of the Form1 class:
public Form1()

{

 InitializeComponent();

 AddOwnedForm(form2);

 AddOwnedForm(form3);

}

Define the Shown event handler for Form1 and the Click events handlers for

button1 and button2:

Form1.Shown, button1.Click, button2.Click handlers
private void Form1_Shown(object sender, EventArgs e)

{

 form2.Location = new Point(Right - 10, Bottom - 10);

}

private void button1_Click(object sender, EventArgs e)

{

 form2.Show();

}

private void button2_Click(object sender, EventArgs e)

{

 form3.ShowDialog();

}

Result. The program contains three forms that demonstrate the main types

of windows in Windows graphical applications: a fixed-size window (the Form1

class), a variable-sized window (the Form2 class), and a dialog window, or a dia-

log box (the Form3 class). There are two buttons on Form1 (see Fig. 5.1); Form2

and Form3 do not yet contain controls. Form1 is the main form; it is automatically

created when the application is launched and immediately displayed on the

screen. In addition, the main form creates two forms named form2 and form3,

48

which are instances of the Form2 and Form3 classes, respectively (see Com-

ment 1).

Form2 (a subordinate form) is called from the main form by clicking the

Open subordinate window button; this form is displayed in normal (non-

modal) mode. Form3 is also a subordinate form; it is invoked by clicking the

Open dialog window button and is displayed in modal (dialog) mode. The

modal mode has the following feature: if some form of the application is in this

mode, you cannot switch to other forms of the application until the modal form

is closed (although it is possible to switch to other running applications). To exit

the program, you need to close its main form.

The main form Form1 has fixed dimensions. The subordinate form form2 is

resizable; in addition, form2 can be expanded to full screen. The visual properties

of form3 correspond to the standard properties of the dialog box: form3 cannot be

resized and, moreover, only the header text and a close button are displayed in

its title bar (see Fig. 5.3). See also Comment 2.

The position of Form1 on the scteen is selected by the operating system,

form2 is displayed near the lower-right corner of Form1 with a slight overlap;

form3 is always displayed in the center of the screen (see Comment 3).

Error. After form2 closing, a new attempt to reopen it results in an excep-

tion with the following message: Cannot access a disposed object. This is be-

cause closing a non-modal form destroys it. Note that, if the form is opened in

dialog mode, then its destruction on closing does not occur, you can check this

by opening and closing form3 several times.

Correction. Define an event handler for the FormClosing event for the Form2

class:

Form2.FormClosing handler
private void Form2_FormClosing(object sender,

 FormClosingEventArgs e)

{

 if (e.CloseReason == CloseReason.UserClosing)

 {

 e.Cancel = true;

 Hide();

 }

}

Result. Now form2, like form3, can be reopened and closed many times dur-

ing program execution (see Comment 4).

Comments

1. Calling the f1.AddOwnedForm(f2) method adds the form f2 to the list of

subordinate forms of form f1. In this case, in particular, the Owner property of

the form f2 becomes equal to f1 (note that, instead of the indicated method call,

an assignment f2.Owner = f1 may be used). The subordinate form is always dis-

49

played on top of the main form, even if the main form is active. In addition,

when the main form is minimized or closed, its subordinate forms are also min-

imized or, accordingly, closed.

2. By setting the ShowInTaskbar propertiy of a form to False, button for this

form is not displayed on the screen taskbar. The FormBorderStyle property is re-

sponsible for the form border style, the MinimizeBox shows or hides the mini-

mize button, MaximizeBox shows or hides the maximize button, ShowIcon shows

or hides the icon in the form title bar, ControlBox allows to hide all title bar ele-

ments except the text, and HelpButton allows to display a button with a question

mark (but only if both the minimize button and maximize button are hidden).

The FixedDialog border style, unlike the FixedSingle style, automatically hides

the icon in the form title bar.

3. The StartPosition property is responsible for the initial position of the

form on the screen; this property is equal by default to the

WindowsDefaultLocation value (the position of the form is determined by the op-

erating system). To locate the form in the center of the screen, set the

StartPosition property equal to CenterScreen. To explicitly determine the starting

position using the Location property of the form, the StartPosition property must

be set to Manual (otherwise the Location property value is ignored). If the

StartPosition property is not equal to Manual, then the properties associated with

the form’s position (Location, Left, Top, etc.) will only get correct values when

the form is first displayed on the screen. The Shown event is associated with the

first form display, so we define the initial position of the subordinate form

form2 in the Shown event handler for the main form Form1, when the position of

the main form on the screen is already known (see the Form1_Shown method).

4. The FormClosing event belongs to a group of events that occur before the

execution of an action and allow it to be canceled. The second parameter (e)

for handlers of such events has a mutable Cancel field, which should be set to

true if you want to cancel the corresponding action. The Form2_FormClosing

handler cancels the closing of form2; instead, it is simply remove this form from

the screen by the Hide method (a similar result can be achieved by setting the

value of its Visible property to false). The condition specified in the handler al-

lows you to determine what led to the attempt to close the form. This condition

will be true when an attempt to close the form is made by any of the methods

available to the user of the program or when the Close method is called explic-

itly. At the same time, if the Close method is automatically called at the mo-

ment of closing the main form, this condition will be false, which will allow to

close the subordinate form when the application terminates.

5.2. Checking the state of the subordinate form

Modify the button1_Click method as follows:

50

private void button1_Click(object sender, EventArgs e)

{

 form2.Visible = !form2.Visible;

}

Define an event handler for the VisibleChanged event for Form2:
Form2.VisibleChanged handler
private void Form2_VisibleChanged(object sender, EventArgs e)

{

 Owner.Controls["button1"].Text = Visible ?

 "Close subordinate window" : "Open subordinate window";

}

Result. Now the text of button1 and the actions when it is clicked depend on

whether the subordinate form form2 is displayed on the screen or not: if the sub-

ordinate form is visible on the screen, then it disappears; if it is not visible on the

screen, then it appears. Note that the subordinate form can be closed not only

with button1, but also in any standard way accepted in Windows (for example,

using the Alt+F4 key combination); any method of closing the subordinate form

will change the title of button1.

Comments
1. While the main form can simply refer to the subordinate form by its

name form2, the subordinate form cannot do this, since the name of the main

form is unknown to it. The main form of a Windows Forms application does

not have a name at all, since this form is created by the constructor call in the

parameter of the Application.Run method (see Comment 6 in Section 4.1). How-

ever, the subordinate form can refer to the main form using the Owner property.

Moreover, using the Controls collection property of ControlCollection type, the

subordinate form can access all the controls of its owner. The elements of the

Controls collection can be indexed either using numbers or using string keys –

control names. So, in the Form2_VisibleChanged method, we could specify the

number 1 instead of the string key button1, since the form controls are num-

bered in the order opposite to their placement on the form: in our case, button2

(last placed on the form) has an index 0, and button1 has an index 1. Note that a

consequence of this way of numbering controls is that placing a new control on

the form changes the indices of all controls previously placed on the form. For

this reason, rather than using numeric indices, it is preferable to use string keys

corresponding to the names of the required controls. We will return to ques-

tions related to the order of placing controls on the form in the MOUSE project

(see Section 9.1).

2. In the Form2_VisibleChanged method, a ternary operator is used:
condition ? expression1 : expression2

If the condition is true, then expression1 is evaluated and returned; if the con-
dition is false, then expression2 is evaluated and returned. We emphasize that

51

when performing a ternary operator, only the expression whose value will be

returned is evaluated. We used the ternary operator because it results in more

compact code than its equivalent form with the full if–then–else conditional

statement:
if (Visible)

 Owner.Controls["button1"].Text = "Close subordinate window";

else

 Owner.Controls["button1"].Text = "Open subordinate window";

5.3. Controls adapting to fit the window

Place the label1 on Form2 and set its properties (when the Dock and TextAlign

properties are set, graphic selection boxes appear on the screen; in each of these

box, you need to click on the central rectangular element):

Properties
label1: AutoSize = False, Dock = Fill, TextAlign = MiddleCenter

As a result, Form2 will change its appearance, as shown in Fig. 5.4.

Fig. 5.4. The final view of Form2

Add the declaration of the count field to the beginning of the Form2 class

declaration:

private int count;

Add new statements to the Form2_VisibleChanged method:

if (Visible)

 label1.Text = "Number of window openings: " + (++count);

Result. When the subordinate window Form2 is resized, the label1 on it is

resized so that it occupies the client area of the window. The label text contains

information about how many times the subordinate window has been opened.

Comments
1. When using the increment operator of the form ++i (a prefix version of

the operator), the value of the variable i is firstly increased by 1 and then this

variable is used in the expression. For the postfix operator i++, the actions are

performed in the reverse order: first, the initial value of i is used in the expres-

sion and then this value is increased by 1. The prefix and postfix versions of

the decrement operator behave in the same way.

2. Note that you do not need to call the ToString method to convert the nu-

meric value ++count to its string representation, because, according to C# rules,

52

if one of the operands of the + operator is a string, then the ToString method is

automatically called for the other operand. Note that, when forming strings

from several elements, you can also use the Format method of the string class or

the interpolated strings instead of the + operator (see Comments 4 and 7 in

Section 2.2 and Comment 1 in Section 9.1).

5.4. Modal and non-modal buttons of the dialog window

Place two labels (label1 and label2), two text boxes (textBox1 and textBox2),

and two buttons (button1 and button2) on Form3. Set the properties of the added

controls, as well as the properties of the Form3:
Properties
Form3: AcceptButton = button1, CancelButton = button3

label1: Text = Main window title:

label2: Text = Subordinate window title:

textBox1: Text = Main window

textBox2: Text = Subordinate window

button1: Text = OK, DialogResult = OK

button2: Text = Apply

button3: Text = Cancel

When setting the relative position of controls on the form (see Fig. 5.5),

you should start with the text boxes and then align the associated labels to these

text boxes.

Fig. 5.5. The final view of Form3

Define the Click event handler for button2 located on Form3:

button2.Click handler (for Form3 button)
internal void button2_Click(object sender, EventArgs e)

// access modifier changed to internal

{

 Owner.Text = textBox1.Text;

 Owner.OwnedForms[0].Text = textBox2.Text;

}

Define the Click event handler for button2 located on Form1:

53

button2.Click handler (for Form1 button)
private void button2_Click(object sender, EventArgs e)

{

 if (form3.ShowDialog() == DialogResult.OK)

 // - checking which button closed the dialog window

 form3.button2_Click(this, EventArgs.Empty);

}

Result. The Form3 dialog window allows you to change the titles of the

main and subordinate windows. The window titles are changed either by click-

ing the non-modal Apply button or by clicking the modal OK button (in the lat-

ter case, the dialog window is closed). The window is also closed when you

click the modal Cancel button; in this case, the window titles are not changed.

Instead of the OK button, you can press the Enter key; instead of the Cancel

button, you can press the Esc key.

Comments
1. If you want the dialog to close when the button is clicked, you must de-

fine the button as modal by setting its DialogResult property to a value other

than None (the default value). Note that, when you set the CancelButton property

for a form, the button specified in this property (in our case, button3) automati-

cally receives the DialogResult value equal to Cancel. The form itself also has

a DialogResult property; if the form is open in dialog mode, then setting its

DialogResult property to a value other than None immediately closes the form,

and the resulting DialogResult value is returned by the ShowDialog function that

displayed the form on the screen. When a modal button is clicked, the value of

its DialogResult property is assigned to the form property of the same name.

When opening a form in non-modal mode, the above mechanism does not

work.

2. To access the Text property of Form2 from Form3, we use the fact that

these forms have a common owner, which stores the list of its subordinate

forms (in the order of their connection) in the OwnedForms property of Form[]
type. Unlike the Controls collection property (see Section 5.2), the OwnedForms

property, being an ordinary array, allows only integer indexing.

3. An explicit call of the button2_Click method of the Form2 class in the but-
ton2_Click handler of the Form1 class provides the execution of the actions asso-

ciated with clicking the Apply button (thus, this call “simulates” clicking the

button). When calling this method, the value named this (that is, the Form1 in-

stance itself) is traditionally specified as the first parameter, and the

EventArgs.Empty value is specified as the second parameter. Instead, you could

have specified the constant null twice, since the parameters of the button2_Click

method of the Form2 class are not used. In our book, we will use null instead of

EventArgs.Empty to reduce the size of program code.

54

To be able to call the button2_Click method of the Form2 class from the

Form1 class, the access modifier for this method must be changed to internal
(the internal modifier provides free access to the class member within the creat-

ed project). It would be possible to specify the public modifier, which provides

free access to a class member from any project. This is usually done when de-

veloping projects that are class libraries; as a result of compiling such projects,

not executable files are created, but files with the .dll extension.

5.5. Setting the active form control

Define a handler for the VisibleChanged event for Form3:
Form3.VisibleChanged handler
private void Form3_VisibleChanged(object sender, EventArgs e)

{

 if (Visible)

 ActiveControl = textBox1;

}

Result. No matter which control of the dialog window was active when it

was closed, the next time the window is opened, the textBox1 is always active.

Thus, the dialog window is always displayed in the same initial state. It is desir-

able to provide such behavior for all dialog windows.

5.6. Request for confirmation of closing the form

Modify the Form2_FormClosing method as follows:
private void Form2_FormClosing(object sender,

 FormClosingEventArgs e)

{

 if (e.CloseReason == CloseReason.UserClosing)

 {

 e.Cancel = true;

 if (MessageBox.Show("Close subordinate window?",

 "Confirmation", MessageBoxButtons.YesNo,

 MessageBoxIcon.Question,

 MessageBoxDefaultButton.Button2) == DialogResult.Yes)

 Hide();

 }

}

Result. Before closing the subordinate window form2 in one of the ways

provided in the Windows system, a confirmation request for closing is displayed

in the standard Confirmation dialog box (Fig. 5.6). If you select No (the Нет

button, which is the default), the window closing action will be canceled. When

you close the main window, the open subordinate window is closed without

prompting.

55

Remark 1. Since the program was launched in the Windows operating sys-

tem with Russian localization, the dialog box uses Russian titles for standard

buttons: Да (Yes), Нет (No), Отмена (Cancel), etc.

Fig. 5.6. Confirmation dialog box

Disadvantage 1. When you select Да (Yes) in the dialog box, the subordi-

nate window is closed, but the main window does not become active.

This is due to the fact that the owner of the MessageBox dialog box is the

form that was currently active on the screen (in our case, the active form is

form2), and this form should be activated when the MessageBox dialog box is

closed. However, if you select Yes, form2 is closed and therefore cannot be acti-

vated. In such a situation, no window on the screen will be active.

Correction. In the Form2_FormClosing method, replace the Hide() statement

with the following block statement:

{

 Hide();

 Owner.Activate();

}

Remark 2. Another way to correct this disadvantege is to explicitly specify

the owner of the MessageBox in an additional parameter, which should be the

first in the parameter list. For example, you can use the Owner property of form2

as this parameter. In this case, if you select Yes, the main form will be success-

fully activated. However, the same form will be activated when the No option is

selected (when the subordinate form remains on the screen), which does not

seem quite natural.

Disadvantage 2. When you close the subordinate window by clicking on

button1 of the main window, the confirmation request for closing is not dis-

played.

This happens because, when the button1_Click handler is executed, the Close

method of the subordinate form is not called (the form simply changes its visi-

bility mode); therefore, the handler associated with the Close event of the subor-

dinate form is not executed either.

Correction. Change the button1_Click method of the Form1 class as follows:
private void button1_Click(object sender, EventArgs e)

{

56

 if (form2.Visible)

 form2.Close();

 else

 form2.Show();

}

Comments
1. In the Form2_FormClosing method, we use the version of the

MessageBox.Show method, which allows to specify the request text, the title of

the dialog box, a set of buttons for this window, an icon in the window, and

a default button. Any parameter other than the first can be omitted; in this case,

all parameters following it must be omitted too. If the second parameter is ab-

sent, then the window title is empty; if the third parameter is absent, then the

only OK button is displayed in the window; if the fourth parameter is absent,

then the icon is not displayed in the window; if the fifth parameter is absent,

then the default button is the first one.

2. There is also a method in the .NET library that allows you to display

a dialog box for input string information: this is the InputBox method of the In-
teraction class. Keep in mind, however, that the Interaction class is defined in the

Microsoft.VisualBasic namespace, and the corresponding library is not automati-

cally linked to C# projects. To link this library, do the following: right-click on

the References item in the Solution Explorer window, select the Add Refer-

ence... command from the context menu, select the Assemblies group in the

Reference Manager window that appears, then select the checkbox near the

Microsoft.VisualBasic item in the list of all assemblies, and finally click OK.

To be able to use the short name of the Interaction class (without specifying its

namespace), you should add the following directive at the beginning of the cs-

file:
using Microsoft.VisualBasic;

The InputBox method has five required parameters: Prompt (prompt string),

Title (title string), DefaultResponse (default response string), XPos, and YPos

(screen coordinates of the upper-left corner of the window). To center the dia-

log box horizontally and/or vertically, the corresponding parameter (XPos

and/or YPos) must be set equal to –1. The method returns the input string if the

dialog box was closed with the OK button or an empty string if the cancel but-

ton was used to close the dialog box.

As for standard dialog boxes, in the dialog box created by the Interac-
tion.InputBox method, the language of the operating system is used for the titles

of the buttons (for example, for the Russian version of Windows, the title От-

мена is used for the cancel button); the only exception is the text OK.

57

6. Sharing event handlers and working with keyboard:
CALC project

The CALC project introduces a technique for the connection of an event

handler to multiple controls. It also demonstrates how to use the TryParse meth-

od to handle input errors and discusses various options for speeding up the key-

board use (default buttons, hot keys, and using the KeyPress event).

6.1. Event handler for multiple controls

After creating the CALC project, place two text boxes, two labels, and five

buttons on Form1. In order to reduce the size of the first four buttons in the same

way (see Fig. 6.1), after placing these buttons on the form, select them (for ex-

ample, enclosing them with a dotted frame) and resize one of them; the size of

the remaining selected buttons will change automatically.

Fig. 6.1. The view of Form1 at the initial stage of development

Set the properties of the form and all added controls as follows:

Properties
Form1: Text = Calculator, MaximizeBox = False,

 FormBorderStyle = FixedSingle, StartPosition = CenterScreen

textBox1: Text = 0

textBox2: Text = 0

label1: Text = +

label2: Text = =

button1: Text = +

button2: Text = -

button3: Text = x

button4: Text = /

button5: Text = =

Define the Click event handler for button1:

button1.Click event handler
private void button1_Click(object sender, EventArgs e)

{

58

 label1.Text = (sender as Button).Text;

}

After definition of the button1_Click handler, connect it to the Click event of

button2, button3, and button4. To do this, select the Events mode in the Proper-

ties window and, for each of these buttons, go to the line with the Click event and

select the name of the button1_Click handler from the drop-down list (you should

not double-click on the text box!). Note that you can make connection with all

three buttons at once; to do this, you must first select all these buttons on the

form.

Result. Pressing any button with the operation sign (+, –, x, /) causes this

operation to be displayed in label1 between textBox1 and textBox2.

Let us emphasize that one common handler was defined for all four but-

tons. This is possible due to the use of the sender parameter in the button1_Click

handler method; this parameter contains a reference to the control that invoked

the handler. The as operator converts the sender parameter (of object type) to the

Button type (if this is not done, a compilation error will occur, since the object
class does not have the Text property).

6.2. Calculations with control of the correctness
of the input data

Define the Click event handler for button5:

button5.Click handler
private void button5_Click(object sender, EventArgs e)

{

 double x = 0,

 x1 = double.Parse(textBox1.Text),

 x2 = double.Parse(textBox2.Text);

 switch (label1.Text[0])

 {

 case '+':

 x = x1 + x2; break;

 case '-':

 x = x1 - x2; break;

 case 'x':

 x = x1 * x2; break;

 case '/':

 x = x1 / x2; break;

 }

 label2.Text = "= " + x;

}

59

Result. When the = button is clicked, the specified expression is evaluated

and displayed on the screen (in label2). Note that the number 0 can be specified

as the second operand for the division operation: when divided by 0, the result is

–Infinity or Infinity (depending on the sign of the first nonzero operand). If

both operands are 0, then the result of division is NaN (not a number). Special

values of double type are discussed in Comment 2, Section 3.1. See also Com-

ment 1.

Disadvantage. If one of the text boxes does not contain text or this text

cannot be converted to a number (for example, abc), then clicking the = button

throws an exception. If the program is launched in the Debug mode (by pressing

the F5 key), then its execution will be interrupted, and the statement that caused

the error will be highlighted in the editor of the Visual Studio environment. Pos-

sible actions in this situation are described in detail in Section 3.1.

Correction. Change the button5_Click method as follows:
private void button5_Click(object sender, EventArgs e)

{

 double x = 0, x1, x2;

 if (!double.TryParse(textBox1.Text, out x1) ||

 !double.TryParse(textBox2.Text, out x2))

 {

 label2.Text = "= ERROR";

 return;

 }

 switch (label1.Text[0])

 {

 case '+':

 x = x1 + x2; break;

 case '-':

 x = x1 - x2; break;

 case 'x':

 x = x1 * x2; break;

 case '/':

 x = x1 / x2; break;

 }

 label2.Text = "= " + x;

}

Result. Now, when trying to evaluate an expression with invalid operands,

the text ERROR is displayed in label2; this does not interrupt the program exe-

cution, and the error message window does not appear (see Comment 2).

60

Comments
1. To convert strings to real numbers x1 and x2, the first version of the but-

ton5_Click method used the Parse method for the double type (see also Com-

ment 1 in Section 3.1). To convert the resulting number x to its string represen-

tation, we do not need to call the ToString method, since the x variable is used in

the expression "=" + x, which automatically performs the required conversion

(see Comment 2 in Section 5.3).

2. To correct the noted disadvantage, we used the TryParse method, which,

unlike the Parse method, never throws an exception. The TryParse method for

the double type returns true if the string contains the correct representation of

a real number and false otherwise. The result of converting the string to a real

number is returned in the second, output parameter. Note that, in C#, output pa-

rameters must be supplied with the special out modifier when calling a method.

6.3. The simplest techniques to speed up work using keyboard

Set the properties of the form and button controls as follows (see also

Fig. 6.2):

Properties
Form1.AcceptButton = button5

button1: Text = &+

button2: Text = &–

button3: Text = &x

button4: Text = &/

button5: Text = &=

Fig. 6.2. The final view of Form1

Result. The = button (that is, button5) becomes the default button, the

equivalent of clicking it is pressing the Enter key (the button is surrounded by

a thicker blue border by default). Symbols indicated on buttons are underlined;

this is an indication that a shortcut key Alt+underlined character is associated

with each button. Shortcut keys are the special case of the so-called hot keys (or

hotkeys), which are intended for quick performing user actions. A special feature

of shortcut keys is that they are associated with some visual control (or menu

item) and speed up access to this control (menu item), while a hotkey can per-

form an action that is not necessarily associated with any control or menu item.

But often the notions “hot key” and “shortcut key” are used interchangeably.

61

Remark. It is possible that after starting the program, the symbols associat-

ed with the shortcut keys are not underlined. In this case, press the Alt key.

Error. After clicking any button with an arithmetic operation, all subse-

quent calculations return the value 0 (since the first character of label1 is now &,

which is not provided in the switch statement).

Correction. Change the statement in the button1_Click method as follows:

label1.Text = (sender as Button).Text[1].ToString();

This correction causes only the second character of the button title (that is,

the character with index 1) to be copied into label1. Since C# does not explicitly

convert a character expression to the string type, the resulting character must be

converted to string using the ToString method.

6.4. Using a keyboard event handler

Using the Properties window, set the KeyPreview property of Form1 to

True. Define an event handler for the KeyPress event for Form1:

Form1.KeyPress handler
private void Form1_KeyPress(object sender, KeyPressEventArgs e)

{

 char c = e.KeyChar;

 switch (c)

 {

 case '+':

 button1_Click(button1, null); break;

 case '_':

 button1_Click(button2, null); break;

 case 'x':

 case '*':

 button1_Click(button3, null); break;

 case '/':

 button1_Click(button4, null); break;

 }

 e.Handled = ! (char.IsDigit(c) || c == '.' ||

 c == '-' || c == '\b');

}

Result. To select any operation, you can press the corresponding key (since

the “–” key is used when input negative numbers, the combination Shift+“– ”

corresponding to the underscore character is selected as an accelerator for but-
ton2). When input numbers, all keys are ignored except for numbers, “–”, “.”,

and Backspace. You can use the \b escape sequence in C# to denote the charac-

ter generated by the Backspace key; pressing this key deletes the character on

the left from the cursor in the active text box. See also Comments 1–2.

62

Disadvantage. The Form1_KeyPress handler assumes that the decimal sepa-

rator is a decimal point, while other decimal separators may be used in some lo-

cales on the Windows operating system (for example, comma is used as the dec-

imal separator for Windows with Russian localization).

Correction. Change the last statement of the Form1_KeyPress method as

follows:
 e.Handled = ! (char.IsDigit(c) || c == '.' ||

 c == Application.CurrentCulture

 .NumberFormat.NumberDecimalSeparator[0] ||

 c == '-' || c == '\b');

Result. The decimal separator now corresponds to the current Windows re-

gional settings. To test this feature, you just need to temporarily change the re-

gional settings in the Regional and Language Options section of the Windows

Control Panel. See also Comment 3.

Comments
1. In order for keyboard events to be processed by the form first, set the

form’s KeyPreview property to True. If this is not done, then the keyboard event

is immediately processed by the active control; thus, this event does not reach

the form and, accordingly, it does not activate the form’s keyboard handler.

2. If the e.Handled value is set to true in the keyboard handler, then the cur-

rent keyboard event will be considered as handled and will not be passed to

other active controls. So, in our case, the form intercepts and processes all

characters, except for numeric characters, decimal separator, “minus” sign,

and \b.

3. The CurrentCulture property of the Application object allows to get infor-

mation about the locale settings used by the program, in particular, about num-

ber formats. This property has the CultureInfo type defined in the Sys-
tem.Globalization namespace. By default, the program uses the regional settings

of the operating system. The index [0] must be specified because the

NumberDecimalSeparator property has the string type, which is not assignment

compatible with the character type. The NumberDecimalSeparator property is

read-only, but you can change the CurrentCulture property as a whole (see the

comment in Section 7.1).

6.5. Control over changes to the input data

Modify the button1_Click method:
private void button1_Click(object sender, EventArgs e)

{

 label1.Text = (sender as Button).Text[1].ToString();

 label2.Text = "=";

}

Define the TextChanged event handler for the textBox1 control:

63

textBox1.TextChanged handler
private void textBox1_TextChanged(object sender, EventArgs e)

{

 label2.Text = "=";

}

Connect the resulting textBox1_TextChanged handler to the TextChanged

event of the textBox2 control.

Result. If you change the arithmetic operation or the content of text boxes,

the result of the previous calculation is erased. This is an important feature that

prevents inconsistencies in the displayed data. In its absence, a situation is pos-

sible when, for example, after performing calculations of the form 3 + 2

(with the result 5), the user will change the first operand to 2, receiving the text

2 + 2 = 5 on the screen.

64

7. Working with date and time: CLOCK project

The CLOCK project focuses on classes related to date and time (the

DateTime, TimeSpan classes and the non-visual Timer control). Two options for

implementing a stopwatch are considered; actions are described that ensure the

display of the clock and stopwatch on the taskbar when the application window

is minimized.

7.1. Displaying the current time on the form

After creating the CLOCK project, add label1 to Form1, as well as a non-

visual control of Timer type (this control will be named timer1 and will be placed

below the form, in the area of non-visual controls). Set the properties of the form

and the added controls as follows:

Properties
Form1: Text = Clock, MaximizeBox = False,

 FormBorderStyle = FixedSingle, StartPosition = CenterScreen

label1: Text = 00:00:00 AM, AutoSize = True,

 TextAlign = MiddleCenter, BorderStyle = Fixed3D,

 Font.Name = Arial, Font.Size = 60

timer1: Enabled = True, Interval = 1000

When setting the properties of label1, notice its Font property, which also

has a set of properties, two of which, Name and Size, need to be changed (in the

listing above these properties use dot notation: Font.Name and Font.Size). Adjust

the position of label1 in accordance with Fig. 7.1.

Fig. 7.1. Form1 view at the initial stage of development

Define an event handler for the Tick event for the timer1 control:

65

timer1.Tick handler
private void timer1_Tick(object sender, EventArgs e)

{

 label1.Text = DateTime.Now.ToLongTimeString();

}

Result. When the program is running, the current time is displayed in its

window.

Disadvantage. During the first second after starting the program, the origi-

nal text is displayed in the program window, since the Tick event occurs for the

first time only after the timer1.Interval time interval, which is 1000 in our case

(the time is specified in milliseconds).

Correction. Connect the timer1_Click handler to the Load event of Form1.

Result. Now the timer1_Click method is executed for the first time just be-

fore the form is displayed on the screen, so the correct time is immediately dis-

played in the window.

Comment
The .NET Framework class library provides a DateTime structure for work-

ing with date and time. Its static read-only property named Now returns the cur-

rent date and time (based on the computer’s system clock). Only the current

date (time corresponds to midnight) can be obtained using the Today static

property. The following methods of the DateTime structure can be used to con-

vert date/time to their standard string representations:

 ToShortDateString – date in short format (d), for example, 01/27/1756;

 ToLongDateString – date in long format (D), Tuesday, January 27, 1756;

 ToShortTimeString – time in short format (t), 2:55 AM;

 ToLongTimeString – time in long format (T), 2:55:15 AM.

The ToString method without parameters returns the date/time in G format

(date in short format, time in long format). The date/time display format can be

explicitly specified in the ToString method. For example, in our program, we

could use this option: DateTime.Now.ToString("T").
Let us mention some more date/time formats: g – date and time in short

format, F – date and time in long format, f – date in long format, time in short

format, M or m – format "month, day", Y or y – format "month, year".
When formatting dates, the current locale is used (in our case, we use the

settings for US English), although there is an overloaded version of the ToString

method in which you can explicitly specify the required locale. You can also

change all regional settings for the application; it’s enough to set a new value

for the Application.CurrentCulture property (we used this property earlier in Sec-

tion 6.4 to get information about the current regional settings). For example,

you can use the following statement to set the Russian regional settings for an

application:

66

Application.CurrentCulture =

 new System.Globalization.CultureInfo("ru-RU");

Note that the settings for US English are named en-US.

7.2. Implementation of the stopwatch capabilities

Place a checkbox control of CheckBox type (it will be named checkBox1) and

two buttons (button1 and button2) on Form1 and set their properties as follows:

Properties
checkBox1: Text = Stop&watch

button1: Text = &Start/Stop, Enabled = False

button2: Text = &Reset, Enabled = False

Adjust the position of the added controls in accordance with Fig. 7.2.

Fig. 7.2. The final view of Form1 for the CLOCK project

Add the declaration of the field named t to the Form1 class declaration:
private int t;

Add new statements to the top of the timer1_Tick method:
private void timer1_Tick(object sender, EventArgs e)

{

 if (checkBox1.Checked)

 {

 t++;

 label1.Text = string.Format("Time: {0}:{1}", t / 10, t % 10);

 }

 else

 label1.Text = DateTime.Now.ToLongTimeString();

}

Define the CheckedChanged event handler for checkBox1 and Click event

handlers for button1 and button2:

checkBox1.CheckedChanged, button1.Click, button2.Click handlers
private void checkBox1_CheckedChanged(object sender, EventArgs e)

67

{

 if (checkBox1.Checked)

 {

 t = -1;

 timer1.Interval = 100;

 }

 else

 timer1.Interval = 1000;

 timer1_Tick(this, null);

 button1.Enabled = button2.Enabled = checkBox1.Checked;

 timer1.Enabled = true;

}

private void button1_Click(object sender, EventArgs e)

{

 timer1.Enabled = !timer1.Enabled;

}

private void button2_Click(object sender, EventArgs e)

{

 timer1.Enabled = false;

 t = 0;

 label1.Text = "Time: 0:0";

}

Result. When the Stopwatch checkbox is set to the “on” state, the program

switches to the stopwatch mode and the stopwatch starts immediately displaying

seconds and tenths of seconds on the screen. The stopwatch may be started and

stopped by clicking the Start/Stop button, the stopwatch may be reset by click-

ing the Reset button. Hot keys are available: Alt+W (change the clock/stop-

watch mode), Alt+S (start/stop the stopwatch), Alt+R (reset the stopwatch).

Error. The stopwatch shows not quite correct data. We can verify this by

not stopping the stopwatch for some time (while performing other actions on the

computer) and then comparing the result with the exact time. The reason is that

the Tick event occurs approximately every 100 ms; in addition, the Tick event oc-

curs only when there are no other events that need to be processed by the pro-

gram. If the program executes some method for a long time, then the stopwatch

value will not be updated during this time and then its work will continue from

the previous value. For the correct implementation of the stopwatch, we need to

bind it to the computer clock (using the Now method).

Correction. Change the Form1 class declaration:
private int t;

private DateTime startTime, pauseTime;

private TimeSpan pauseSpan;

68

The purpose of the added fields is as follows: the startTime field contains the

start time of the stopwatch; the pauseTime field contains the time of the last stop

of the stopwatch, the pauseSpan field contains the total duration of all stops

made since the initial start.

Modify the timer1_Tick, checkBox1_CheckedChanged, button1_Click, and but-
ton2_Click methods:

private void timer1_Tick(object sender, EventArgs e)

{

 if (checkBox1.Checked)

 {

 t++;

 label1.Text = string.Format("Time: {0}:{1}", t / 10, t % 10);

 TimeSpan s = DateTime.Now - startTime - pauseSpan;

 label1.Text = string.Format("Time: {0}:{1}",

 s.Minutes * 60 + s.Seconds, s.Milliseconds / 100);

 }

 else

 label1.Text = DateTime.Now.ToLongTimeString();

}

private void checkBox1_CheckedChanged(object sender, EventArgs e)

{

 if (checkBox1.Checked)

 {

 t = -1;

 timer1.Interval = 100;

 startTime = DateTime.Now;

 pauseSpan = TimeSpan.Zero;

 }

 else

 timer1.Interval = 1000;

 timer1_Tick(this, null);

 button1.Enabled = button2.Enabled = checkBox1.Checked;

 timer1.Enabled = true;

}

private void button1_Click(object sender, EventArgs e)

{

 timer1.Enabled = !timer1.Enabled;

 if (timer1.Enabled)

 pauseSpan += DateTime.Now - pauseTime;

 else

 pauseTime = DateTime.Now;

69

}

private void button2_Click(object sender, EventArgs e)

{

 timer1.Enabled = false;

 t = 0;

 label1.Text = "Time: 0:0";

 pauseTime = startTime;

 pauseSpan = TimeSpan.Zero;

}

Comment
The TimeSpan structure is used to store relative time intervals. Time inter-

vals are measured in days, hours, minutes, seconds, and milliseconds; to get the

value of each of these controls, you can use the corresponding properties of the

TimeSpan structure: Day, Hour, Minute, Second, Millisecond (note that the same

properties are also available for the DateTime structure; in addition, this struc-

ture has properties Year and Month). The easiest way to set the time span to zero

is to use the read-only TimeSpan.Zero field. Both DateTime and TimeSpan struc-

tures also have read-only fields that define their smallest and largest possible

values: MinValue and MaxValue.

Addition and subtraction operations are defined for DateTime and TimeSpan

structures as follows:

 the sum or difference of TimeSpan values is of TimeSpan type;

 the sum or difference of DateTime and TimeSpan values (in that order) is

of DateTime type;

 the difference between values of the DateTime type is of TimeSpan type;

 you cannot add two DateTime values.

Since negative values are allowed for time intervals, a unary minus opera-

tor is also defined for the TimeSpan structure.

The easiest way to create DateTime and TimeSpan objects with the required

values is to use one of the provided constructors. The parameterless constructor

returns the minimum date for DateTime (midnight on January 1, 1 A.D.), and

a zero time interval for TimeSpan.

In other versionss of the DateTime constructor, you must specify the year,

month, day (and you can additionally specify the time in hours, minutes, and

seconds). The time specified in the DateTime constructor can be complemented

with the number of milliseconds.

TimeSpan constructors need to specify the hour, minute, and second; as an

additional initial parameter, you can specify the number of days. If the

TimeSpan constructor specifies a number of days, then you can specify an op-

tional final parameter, the number of milliseconds.

70

7.3. Alternative options for executing commands
using the mouse

Define an event handler for the MouseDown event for label1:

label1.MouseDown handler
private void label1_MouseDown(object sender, MouseEventArgs e)

{

 if (e.Clicks == 2)

 checkBox1.Checked = !checkBox1.Checked;

 else

 {

 if (!button1.Enabled)

 return;

 if (e.Button == MouseButtons.Left)

 button1_Click(this, null);

 else

 if (e.Button == MouseButtons.Right)

 button2_Click(this, null);

 }

}

Result. Double-clicking any mouse button on label1 changes the clock/stop-

watch mode, single left-clicking in stopwatch mode starts or stops the stop-

watch, single right-clicking resets the stopwatch.

Comments
1. We can combine the actions for single and double mouse clicks in one

handler due to the presence of the Clicks property in the parameter e (of

MouseEventArgs type), which can take the value 1 or 2.

2. When associating some actions with single and double clicks, it should

be taken into account that, when performing a double click, the system first

registers a single click (at which the MouseDown event occurs with e.Clicks

equal to 1, then the Click event occurs, then MouseUp event occurs with e.Clicks

equal to 1), and only then, after the second mouse click, if the time interval be-

tween clicks was short enough, a double click is registered (at which

MouseDown event occurs with e.Clicks equal to 2, then DoubleClick, then

MouseUp with e.Clicks equal to 2). Therefore, it is very important that the action

performed on a single click does not conflict with the action associated with

a double click. In our program everything is fine: although actions are provided

for both single and double-click in the stopwatch mode, the action with a single

click (start, or stop, or reset the stopwatch) does not in any way conflict with

the action associated with a double-click (changing the clock/stopwatch mode).

71

7.4. Displaying the current status of the clock and stopwatch
on the taskbar

Add a new statement to timer1_Tick method:

Text = WindowState == FormWindowState.Minimized ?

 label1.Text : "Clock";

Result. If you minimize the CLOCK application window, then its button

located on the Windows taskbar will display, depending on the mode, the cur-

rent time or stopwatch data. If the application window is in its normal state, then

the application button displays the Clock text that coincides with the window

title.

Disadvantage. If you minimize the window while the stopwatch is stopped,

the text of the application button will not change.

Correction. Define the Resize event handler for Form1:

Form1.Resize handler
private void Form1_Resize(object sender, EventArgs e)

{

 Text = WindowState == FormWindowState.Minimized ?

 label1.Text : "Clock";

}

Result. Now the text on the application button located on the Windows

taskbar is correctly adjusted in any situation, since the Resize event occurs not

only when the form is resized, but also when it is minimized and returned to its

normal state.

72

8. Text input: TEXTBOXES project

The TEXTBOXES project demonstrates the features of controls for text in-

put (TextBox controls). We also consider issues related to control activation, as

well as ways to handle erroneous data at the level of a separate text box and the

form as a whole. A mechanism for generating error messages based on the use

of the ErrorProvider control is described.

8.1. Additional highlighting of the active text box

After creating the TEXTBOXES project, place 12 text boxes (textBox1 –

textBox12) on Form1 and set the properties of the form and the added controls:

Properties
Form1: Text = TextBoxes, MaximizeBox = False,

 FormBorderStyle = FixedSingle, StartPosition = CenterScreen

textBox1-textBox12: Text = Data

Text boxes should be placed on the form row by row from left to right:

textBox1 – textBox3 in the first row, textBox4 – textBox6 in the second row, etc.

(see Fig. 8.1).

Fig. 8.1. Form1 view at the initial stage of development

To assign the same Data value to the Text property of all text boxes, it is

enough to select all controls and then set this value using the Properties win-

dow.

Define the Enter and Leave event handlers for textBox1:

textBox1.Enter and textBox1.Leave handlers
private void textBox1_Enter(object sender, EventArgs e)

{

 TextBox tb = sender as TextBox;

 tb.ForeColor = Color.White;

73

 tb.BackColor = Color.Green;

}

private void textBox1_Leave(object sender, EventArgs e)

{

 TextBox tb = sender as TextBox;

 tb.ForeColor = SystemColors.WindowText;

 tb.BackColor = SystemColors.Window;

}

Connect the created handlers to the Enter and Leave events of all other text

boxes (see Section 6.1 for how to connect handlers to multiple controls). To

connect the created handlers simultaneously to all the remaining text boxes

(textBox2 – textBox12), you must first select all of them.

Result. When any text box receives focus (that is, when the text box is ac-

tivated – see Comment 1), its background and foreground colors change; if fo-

cus is lost, the initial color setting is restored.

Disadvantage. When receiving focus, the text of the text box is highlighted

(as a rule, it is displayed in white on a blue background); thus, the left-hand part

of the text box (highlighted characters) is colored blue and the right-hand one is

green, which looks bad.

Correction. Add new statements to the constructor of the Form1 class:
public Form1()

{

 InitializeComponent();

 for (int i = 1; i <= 12; i++)

 {

 TextBox tb = Controls["textBox" + i] as TextBox;

 tb.Select(tb.Text.Length, 0);

 }

}

Result. Now, when receiving focus, the text in the text box is not selected,

and the keyboard cursor (a caret), which looks like a vertical line, is located af-

ter the last character of the text (see Comment 2).

Remark. To iterate over all the text boxes placed on the form, the Controls

collection property of the form was used (see Comment 1 in Section 5.2).

Comments
1. Moving focus is provided by clicking on the control or using the Tab and

Shift+Tab keys. When using the Tab and Shift+Tab keys, the order of moving

focus (named tab order) of focusable controls is determined by the value of

their TabIndex property. By default, the tab order is the same as the order of

adding controls to the form. The easiest way to view and change the current tab

order is to use the View | Tab Order menu command in form design mode.

74

When this command is executed, a number equal to the value of the TabIndex

property is displayed near each form control. To set a new tab order, it is

enough to click all controls in the required order (the numbers near the controls

will be changed). To exit the tab order setting mode, just press the Esc key.

Note that the tab order can also be changed programmatically (see Section 8.2).

The TabStop property is also associated with the tab order: if the value of the

TabStop property of some visual control is False, then this control is excluded

from the tab order.

It is often sufficient to use the arrow keys to move focus, but this is not

possible for text boxes because they handle the arrow keys in a special way.

2. Many properties and methods are provided in the text boxes to set and

change the selected text. The above Form1 constructor uses the Select method,

which has two parameters: the position of the start of the selection (numbered

from zero, which corresponds to the position number before the first character)

and the length of the selection, that is, the number of characters selected. If the

selection length is 0, then the start position of the selection determines the caret

position. The SelectionStart and SelectionLenght properties are also provided for

the start of the selection and its length, respectively; these properties are muta-

ble. For example, the statement tb.SelectionStart = tb.Text.Length can be used in-

stead of the last statement of the Form1 constructor (the SelectionLength property

can be left unchanged).

Let us also mention an important property named SelectedText, which al-

lows to get and change the selected text. Assigning a new string to the

SelectedText property causes the selected fragment to be replaced with the spec-

ified string (if the text box did not contain a selection, then the specified string

is inserted at the caret position). Changing the SelectedText property hides the

selection and places the caret behind the inserted text fragment (thus, after set-

ting the SelectedText property to any value, this property will return an empty

string). If you assign an empty string to the SelectedText property, then the pre-

viously selected fragment will be deleted.

Another property related with selection is the HideSelection boolean proper-

ty. If it is set to True (which is the default value), then, when a text box field

loses focus, the selected text fragment will no longer be displayed in a different

color (however, when the focus is received again, the selection color is re-

stored). If the HideSelection property is set to False, then the appearance of the

selection does not change when the focus is lost (this mode is usually used in

text editors when performing actions to find and replace text fragments).

8.2. Changing the tab order of text boxes

Place the groupBox1 container control (of GroupBox type) on Form1. After

that, place two radio buttons in the created container control: radioButton1 and

75

radioButton2. Set the position of the added controls (Fig. 8.2), as well as their

properties:

Properties
groupBox1: Text = Tab Direction

radioButton1: Text = &Rows, Checked = True

radioButton2: Text = &Columns

Fig. 8.2. Form1 view at an intermediate stage of development

Define an event handler for the CheckedChanged event for radioButton1, then

connect the created handler to the CheckedChanged event of radioButton2.

radioButton1.CheckedChanged handler
private void radioButton1_CheckedChanged(object sender,

 EventArgs e)

{

 if (!(sender as RadioButton).Checked)

 return;

 if (sender == radioButton1)

 for (int i = 0; i <= 11; i++)

 Controls["textBox" + (i + 1)].TabIndex = i;

 else

 for (int i = 0; i <= 3; i++)

 for (int j = 0; j <= 2; j++)

 Controls["textBox" + (3*i + j + 1)].TabIndex = i + 4*j;

}

Result. Using the radio buttons added to the form, you can change the tab

order of text boxes: the fields can now be selected either by rows (with the

Rows radio button selected), or by columns (with the Columns radio button se-

lected). You can also switch the tab order using the Alt+R and Alt+C key com-

binations.

Disadvantage. With any of the implemented methods of changing the tab

order, the current text box loses focus (since one of the radio buttons receives

focus).

76

Correction. Change the Text properties of the radio buttons as follows:

&Rows (F2) for radioButton1 and &Columns (F3) for radioButton2, set Form1’s

KeyPreview property to True, and define the KeyDown event handler for Form1:

Form1.KeyDown handler
private void Form1_KeyDown(object sender, KeyEventArgs e)

{

 switch (e.KeyCode)

 {

 case Keys.F2:

 radioButton1.Checked = true; break;

 case Keys.F3:

 radioButton2.Checked = true; break;

 }

}

Result. Now you can just press the F2 key to set the tab order by rows and

press F3 to set the tab order by columns. The focus remains on the previously

activated text box.

Comment
When a new radio button is selected, the CheckedChanged event handler is

executed twice: for the previously selected radio button, whose Checked prop-

erty has changed from true to false, and for the newly selected radio button,

whose Checked property has changed from false to true. The first conditional

statement of the radioButton1_CheckedChanged handler causes an immediate exit

if the handler is called on a radio button that has lost its selection. The second

conditional statement allows to determine which radio button has become se-

lected. Note that the CheckedChanged event occurs not only when the mouse is

clicked on one of the radio buttons, but also when the Checked property is pro-

grammatically changed (this is the difference between the CheckedChanged

event of a radio button and its Click event, which occurs only as a result of user

actions).

8.3. Blocking exit from an empty text box

Define a handler for the Validating event for the textBox1 and then connect

the created handler to the Validating events of all other text boxes.

textBox1.Validating handler
private void textBox1_Validating(object sender, CancelEventArgs e)

{

 e.Cancel = (sender as TextBox).Text.Trim() == "";

}

Result. If the active text box is empty, then it is impossible to exit it (in

particular, it is impossible to close the form). Note that we can still select radio

77

buttons using the F2 and F3 keys, since this feature is not associated with loss of

a focus for the active text box.

Disadvantage. The reason the focus is being locked may not be clear to the

user. This disadvantage will be corrected in the next section.

Comments
1. The Validating event occurs before the control loses focus; in the handler

of this event, the loss of focus can be blocked by setting the Cancel property of

the parameter e to true (compare this with the actions of the FormClosing event

handler discussed in Section 5.1).

2. The Trim method of the string class removes all leading and trailing spac-

es and returns the modified string. There are also TrimStart and TrimEnd methods

that remove only leading or only trailing spaces, respectively. Using the Trim,

TrimStart, and TrimEnd methods, you can remove not only spaces, but also any

other characters; for this, it is enough to specify the characters to be removed

as parameters of these methods (the number of parameters can be arbitrary).

8.4. Informing the user about the error

Add a non-visual ErrorProvider control to the form (it will be named

errorProvider1) and set its BlinkStyle property to NeverBlink.

Define a handler for the TextChanged event for the textBox1 and then con-

nect the created handler to the TextChanged events of all other text boxes.

textBox1.TextChanged handler
private void textBox1_TextChanged(object sender, EventArgs e)

{

 TextBox tb = sender as TextBox;

 if (tb.Text == "")

 errorProvider1.SetError(tb, "Text must be non-empty");

 else

 if (errorProvider1.GetError(tb) != "")

 errorProvider1.SetError(tb, "");

}

Result. If you delete all characters in the active text box, an icon of

a red circle with an exclamation mark (that is, a sign of an error) will appear to

the right of this text box. If you move your mouse cursor over this icon, a tooltip

appears with a brief explanation of the cause of the error. If you input at least

one character in an empty text box, the icon disappears.

Comment
By using a single instance of the ErrorProvider control, you can inform the

user about errors associated with various visual controls. You can change the

icon displayed on the screen in case of an error (the Icon property), as well as

set one of the blinking modes of this icon using the BlinkStyle property

(NeverBlink – no blinking, AlwaysBlink – constant blinking, BlinkIfDifferentError –

78

short blinking when the icon is displayed on the screen and also when the text

with the error message changes for this control). The blink rate (in millisec-

onds) can be adjusted using the BlinkRate property.

8.5. Providing additional information about the error

The brief error message may be confusing for some users. In such a situa-

tion, it is desirable to provide for the possibility of calling the help system, but

this call, as a rule, is performed using the Help button, while exit from the erro-

neous text box is blocked. The CausesValidation property is provided to solve this

problem.

Place a button (named button1) on the form, set its Text property to Help

(Fig, 8.3), set its CausesValidation property to False, and define the Click event

handler for the button:

button1.Click handler
private void button1_Click(object sender, EventArgs e)

{

 MessageBox.Show("The text in the text box must not be empty",

 "Help");

}

Fig. 8.3. The final view of Form1

Result. The Help button is available for click in a situation when one of the

text boxes is blocked. However, in this situation, you still cannot navigate to

other form controls (you can only return to the text box marked as erroneous).

Remark. For all visual controls, the CausesValidation property defaults to

True. It is recommended to change it to False only for buttons related to the

help call.

8.6. Form-level error checking

Blocking an erroneous text box can be too inconvenient for users who pre-

fer to fill in text boxes that are not problematic first and then return to those text

boxes that require additional thought. To make this method of filling data avail-

able, you should use blocking actions that are performed at the form level, that

79

is, at the level of the entire dataset (examples of such actions are saving the en-

tire dataset in a file or sending this dataset over the network). Let us implement

such blocking actions for our project.

Select all text box controls and clear the Validating event for them in the

Properties window (you can also remove the textBox1_Validating method from

the Form1.cs file).

Define the FormClosing event handler for Form1:

Form1.FormClosing handler
private void Form1_FormClosing(object sender,

 FormClosingEventArgs e)

{

 if (e.CloseReason != CloseReason.UserClosing)

 return;

 for (int i = 1; i <= 12; i++)

 if (errorProvider1.GetError(Controls["textBox" + i]) != "")

 {

 e.Cancel = true;

 return;

 }

}

Result. Now the presence of an empty text box does not prevent the activa-

tion of the other text box, however, an error icon is displayed near to each empty

text box. If there is at least one error icon, the form cannot be closed.

Remark. The first conditional statement in the Form1_FormClosing handler

gives the opportunity to close the form if the corresponding command comes not

from the user, but from the operating system (for example, the form must be

closed when Windows exits). See also Comment 4 in Section 5.1.

80

9. Mouse event handling: MOUSE project

The MOUSE project is primarily devoted to mouse event handling. The

mouse capture mechanism and the problems caused by such a capture are con-

sidered. We discuss parent-child relationships and the ordering of child controls

in a form or other container control (z-order). Also we describe the find and re-

place tools of Visual Studio environment.

9.1. Dragging with the mouse. Setting the z-order of controls
on a form

After creating the MOUSE project, place two Panel controls on Form1 (they

will be named panel1 and panel2) and set the properties of the form and the add-

ed controls (see also Fig. 9.1):

Properties
Form1: Text = Mouse, MaximizeBox = False,

 FormBorderStyle = FixedSingle, StartPosition = CenterScreen

panel1: BackColor = Red, BorderStyle = Fixed3D

panel2: BackColor = Green, BorderStyle = Fixed3D

Fig. 9.1. Form1 view at the initial stage of development

Add the field declaration to the beginning of the Form1 class declaration:

private Point p;

Define event handlers for the MouseDown and MouseMove events for panel1,

then connect the created handlers to the MouseDown and MouseMove events of

panel2 (see Section 6.1 for how to connect handlers to multiple controls).

panel1.MouseDown and panel1.MouseMove handlers
private void panel1_MouseDown(object sender, MouseEventArgs e)

81

{

 p = e.Location;

}

private void panel1_MouseMove(object sender, MouseEventArgs e)

{

 Panel a = sender as Panel;

 Text = string.Format("Mouse - {0} {1}", a.Name, e.Location);

 Size s0 = new Size(e.X - p.X, e.Y - p.Y);

 if (e.Button == MouseButtons.Left)

 a.Location += s0;

}

Define an event handler for the MouseMove event for Form1:

Form1.MouseMove handler
private void Form1_MouseMove(object sender, MouseEventArgs e)

{

 Text = "Mouse";

}

Result. After starting the application, moving the mouse cursor over any

panel causes the name of the panel and the current values of the local coordi-

nates of the mouse relative to the panel to be displayed in the window title, in

addition to the Mouse text. If the left mouse button is held down, the panel is

moved along the form (“dragged” by the mouse). See also Comments 1–3.

Disadvantage. When panel1 dragging, it may be overlapped by panel2.

Correction. Add two statements to the panel1_MouseDown method:

Panel a = sender as Panel;

a.BringToFront();

Result. Now the dragged panel is always positioned on top of all window

controls (see Comment 4).

Remark. The required result can be obtained using a single statement

(sender as Panel).BringToFront(). We declare an auxiliary object a of Panel type,

since, in the subsequent sections, the panel1_MouseDown method will be supple-

mented with other statements using the object a.

Comments
1. To update the form title when dragging the panel (see panel1_MouseMove

method), the Format method of the string class is used, which returns a string

that contains both plain text and formatted representations of various objects.

The first parameter of the Format method is a format string containing plain

text and format settings for other parameters (the number of formatted parame-

ters can be arbitrary). Format settings are enclosed in curly braces { }. In our

case, we use the simplest format settings, in which only the ordinal number of

the parameter displayed in the specified position of the format string is set (in

82

such a simple situation, the ToString method is automatically called to format

the parameter). Note that the ToString method of the Point object annotates the X

and Y coordinates with X = and Y = comments and encloses the resulting text

in curly braces, for example, {X = 50, Y = 15}. For format settings, see also

Comment 4 in Section 2.2.

2. In the panel1_MouseMove method, when calculating the new position of

the panel, an offset s0 of Size type is added to its previous position Location of

Point type (offset s0 is created using the constructor of the Size structure). Ob-

jects of Size type can not only be added, but also subtracted from an object of

Point type; the result is a new object of Point type. You cannot add and subtract

objects of Point type. Objects of Size type can be added and subtracted; the re-

sult is an object of Size type. Note that the Point and Size types can be converted

to each other using an explicit cast. Given this fact, the position of the panel

can be recalculated as follows:
a.Location += (Size)e.Location - (Size)p;

3. The apparent constancy of the coordinate values displayed on the screen

when dragging the panel is explained by the fact that, immediately after chang-

ing the mouse coordinates, the position of the panel on the form is adjusted,

and the local mouse coordinates relative to the panel are recalculated at the

same time. If you move the panel quickly enough, you will notice that other

coordinate values are displayed for a short time in the form title bar.

4. Any visual control has the BringToFront method, which “raises” this con-

trol above all controls, and the SendToBack method, which “lowers” this control

under all controls. These actions involve changing the z-order of the controls,

that is, their relative position on the z-axis oriented perpendicular to the plane

of the screen. The concept of z-order is closely related to the parent-child rela-

tionship and makes sense for children of the same parent, so the parent-child

relationship should be discussed first.

As a rule, the parent of the controls is the form, but any container control

can act as a parent (such controls are indicated in the Containers group of the

Toolbox window). Further in this comment, we will use the variable p to des-

ignate a parent, that is, a form or a container control.

All child controls are contained in the Controls collection property of their

parent p. The Controls property is of ControlCollection type and allows you to re-

fer to any child control either by an integer index starting from zero (for exam-

ple, p.Controls[0]) or by a string key that matches the name of the child control

(that is, the value of its Name property, for example, p.Controls["button1"]). To

add a control to the Controls collection, you can use its Add method (for exam-

ple, p.Controls.Add(button1)). You can also set the control’s Parent property to p

(for example, button1.Parent = p). These ways of adding a control to the Controls

collection are completely equivalent. The new control is added to the end of the

Controls collection (the starting element of the collection is the element with in-

83

dex 0). The size of the Controls collection can be determined by using its read-

only Count property.

The position of the child is relative to the upper-left corner of the parent’s

client area (that is, this position is specified in the parent’s local coordinate

system). Child controls cannot be displayed outside the visible area of their

parent (although they can be placed outside the visible area – see Section 9.2).

Note that a form usually has no parent; in this case, its Parent property is

null and its position is in screen (that is, global) coordinates. The exception is

child forms in an MDI application (see Chapter 22). In addition, the form can

have an owner – see Sections 5.1, 5.4, 5.6.

Let us go back to the concept of z-order. It is convenient to assume that the

z-axis is directed away from the user, that is, into the screen (in this case, we

get the right-handed coordinate system xyz, since the y-axis is directed vertical-

ly downward on the screen). With this assumption, you can treat the child con-

trols’ indices in the Controls collection as their z-coordinates. In other words,

the first item in the Controls collection (with index 0) is located on the z-axis at

point 0, the second control (with index 1) at point 1, and so on. We emphasize

that the z-axis is directed away from the user, so the first child control will ap-

pear as the topmost control and may overlap the second and other child con-

trols.

This statement seemingly contradicts the result that we get when adding

a control to a form in design mode, because the control that is placed last on

the form is the topmost control. The answer is that adding a control to a form in

design mode and adding a control to the Controls collection leads to different

results. You can verify this by opening the Form1.Designer.cs file and view-

ing the text of the InitializeComponent method (you may first need to expand the

Form1.Designer.cs file fragment marked as Windows Form Designer gener-

ated code). It turns out that the Controls.Add methods are called on controls in

the reverse order of being placed on the form. In other words, when placing

a control on a form in design mode, this control is located not at the end, but at

the beginning of the Controls collection. This fact explains the apparent contra-

diction. A clear understanding of this fact allows you to avoid a number of er-

rors associated with placing controls on a form and accessing them using the

Controls collection. Let us point out two of the most typical errors of this kind.

 Do not assume that the first control placed on a form in design mode will

have index 0 in the Controls collection. On the contrary, at every stage of pro-

gram development, index 0 will be associated with the last control added to the

form in design mode. That is why it is more convenient to access the elements

of the Controls collection not by numeric indices, but by string keys such as

"button1".

 Do not assume that a control added to a form not in design mode, but

programmatically (that is, by explicitly assigning a form object to its Parent

84

property or by calling the Add method of the form’s Controls collection) will ap-

pear on the form as the topmost control. On the contrary, it will be placed at

the end of the Controls collection and therefore will be below all other child

controls, that is, it will be the last in z-order. For a control to become the top-

most control, after adding it to the Controls collection, you should explicitly call

the BringToFront method for it.

A clear understanding of the z-order features of Windows Forms library

also allows you to understand the features of control docking (that is, binding

of the control to the boundaries of the form performed by setting the Dock

property), but we will defer this discussion until another example (see Sec-

tion 21.3).

9.2. Resizing with the mouse

At the beginning of the Form1 class declaration, add a declaration of the

new field:

private Size s;

Add new statements to the panel1_MouseDown and panel1_MouseMove meth-

ods:
private void panel1_MouseDown(object sender, MouseEventArgs e)

{

 p = e.Location;

 Panel a = sender as Panel;

 a.BringToFront();

 s = a.Size;

}

private void panel1_MouseMove(object sender, MouseEventArgs e)

{

 Panel a = sender as Panel;

 Text = string.Format("Mouse - {0} {1}", a.Name, e.Location);

 Size s0 = new Size(e.X - p.X, e.Y - p.Y);

 if (e.Button == MouseButtons.Left)

 a.Location += s0;

 else if (e.Button == MouseButtons.Right)

 a.Size = s + s0;

}

Result. If you move the mouse cursor over the panel while holding down

the right mouse button, the panel is resized (the left button is still used to change

the position of the panel). Note that you can even drag the panel to an area out-

side the window. If you do not release the mouse button at the same time, the

panel can be returned back to the visible part of the window (similarly, after re-

ducing the panel’s size to zero, you can then restore them). The noted feature is

related to the mechanism of mouse capture: if you press any mouse button over

85

a control, this control will “capture” the mouse and “force” mouse to execute

mouse event handlers of this control (even if the mouse cursor leaves the con-

trol) until the mouse button will not be released (however, this event will also be

handled by the control that previously captured the mouse). See also Com-

ment 1.

Disadvantage. If you drag the panel entirely outside the window and re-

lease the mouse button, then access to the panel will be impossible. The panel

will also become inaccessible when its size is reduced to zero, provided that you

release the mouse button at that moment.

Correction. Set the AutoScroll property of Form1 to True and change the

panel1_MouseMove method as follows:
private void panel1_MouseMove(object sender, MouseEventArgs e)

{

 Panel a = sender as Panel;

 Text = string.Format("Mouse - {0} {1}", a.Name, e.Location);

 Size s0 = new Size(e.X - p.X, e.Y - p.Y);

 if (e.Button == MouseButtons.Left)

 {

 a.Location += s0;

 Point p0 = a.Location + s0;

 a.Location = new Point(Math.Max(0, p0.X), Math.Max(0, p0.Y));

 }

 else if (e.Button == MouseButtons.Right)

 {

 a.Size = s + s0;

 s0 += s;

 a.Size = new Size(Math.Max(50, s0.Width),

 Math.Max(20, s0.Height));

 }

}

Result. Now it is impossible to drag the panel beyond the left or top border

of the window, and, in addition, the minimum panel size (in pixels) is set equal

to 50 20. Dragging the panel outside the right or bottom border of the window

does not make it inaccessible, since, in such a situation, the window displays

scroll bars (due to the True value for the AutoScroll property of the form). See

also Comments 2 and 3.

Comments

1. The mouse capture effect can be demonstrated in our program in one

more way: if you press the mouse button on a free part of the form and then

move the mouse cursor to one of the panels, the form title will not change (it

will still look like Mouse). This is because, in this situation, the mouse is cap-

86

tured by the form itself, and even when the mouse is moved over the panel, the

MouseMove event is sent to the form that captured the mouse. If we release the

mouse button over the panel, then any mouse movement will be “intercepted”

by the panel and lead to changing the form title.

2. To correct the disadvantage, we limited the size of the control by adding

the appropriate code to the program (see the new version of the pan-
el1_MouseMove method). The other way of correction is to restrict the size of

a control using its MinimumSize and MaximumSize properties of Size type. In our

case, it is enough, for panels panel1 and panel2, to set the MinumumSize property

equal to 50; 20 using the Properties window. However, this way of correction

is less convenient because it requires setting the MinumumSize property for each

control. In addition, there are no properties limiting the position of the control.

3. The Max function used in the new version of the panel1_MouseMove

method returns the maximum of two numeric parameters. This function is

a static method of the Math class. All other standard math functions are also

implemented as static methods of the Math class.

9.3. Using additional cursors

Add new statements to the panel1_MouseDown method:
private void panel1_MouseDown(object sender, MouseEventArgs e)

{

 p = e.Location;

 Panel a = sender as Panel;

 a.BringToFront();

 s = a.Size;

 if (e.Button == MouseButtons.Left)

 a.Cursor = Cursors.Hand;

 else if (e.Button == MouseButtons.Right)

 a.Cursor = Cursors.SizeNWSE;

}

Define a handler for the MouseUp event for panel1, then connect the created

handler to the MouseUp event of panel2:

panel1.MouseUp handler
private void panel1_MouseUp(object sender, MouseEventArgs e)

{

 (sender as Panel).Cursor = null;

}

Result. In the mode of resizing the panel, the mouse cursor becomes a di-

agonal double-headed arrow; in the drag mode, it becomes a “pointing hand”.

After exiting these modes, the standard cursor is restored.

Remark. The Cursor property of any visual control, as well as the Cursors

class, were discussed in detail in Chapter 11. Recall that, if the Cursor property is

87

null, the control will use the cursor of its parent (in this case, the cursor of the

form).

9.4. Handling a situation with simultaneous pressing
of several mouse buttons

Our program will work fine as long as the user does not think to press the

left mouse button while holding the right button down (or vice versa). For defi-

niteness, we will describe the behavior of the program in a situation when, while

the left mouse button was pressed on the panel, the right mouse button was addi-

tionally pressed (and, in addition, we will assume that when performing the ac-

tions described below, the mouse cursor will not leave the panel on which it was

initially located). At the moment of pressing the second button, the cursor will

change to a diagonal arrow; however, with the subsequent movement of the

mouse, neither the position nor the size of the panel will change. If you release

one of the mouse buttons, the cursor will take the form of a standard arrow (the

default cursor); however, when you move the mouse, the action determined by

the mouse button that remains pressed will be performed.

This behavior is explained by the following features of the mouse event

handlers: when the handlers for the MouseDown and MouseUp events are execut-

ed, the e.Button parameter contains information about the mouse button that was

just pressed (or, respectively, released). The e.Button parameter does not contain

information about other buttons pressed. On the other hand, when the

MouseMove event handler is executed, the e.Button parameter contains infor-

mation about all currently pressed mouse buttons; the elements of the

MouseButtons enumeration corresponding to the pressed buttons are combined by

the operator | (bitwise OR).

This makes it possible to understand why our program does not perform

any actions when the buttons are simultaneously pressed: in fact, the actions to

move or resize the panel are implemented in the MouseMove event handler when

the condition e.Button == MouseButtons.Left or e.Button = = MouseButtons.Right
holds, but, if both mouse buttons are pressed, neither of these conditions are

true, because, in this case, the e.Button property contains the expression

MouseButtons.Left | MouseButtons.Right.
To avoid such undesirable effects, we should analyze in more detail the

state of the mouse buttons in the handlers associated with their pressing and re-

leasing. We will assume that the left button has a higher priority: if it is pressed

(even simultaneously with the right button), then the panel should be dragged,

not resized (and the cursor should be a “pointing hand”).

Let us make the required changes to the event handlers:
private void panel1_MouseDown(object sender, MouseEventArgs e)

{

 p = e.Location;

88

 Panel a = sender as Panel;

 a.BringToFront();

 s = a.Size;

 if (e.Button == MouseButtons.Left)

 if ((MouseButtons & MouseButtons.Left) != 0)

 a.Cursor = Cursors.Hand;

 else if (e.Button == MouseButtons.Right)

 else if ((MouseButtons & MouseButtons.Right) != 0)

 a.Cursor = Cursors.SizeNWSE;

}

private void panel1_MouseMove(object sender, MouseEventArgs e)

{

 Panel a = sender as Panel;

 Text = string.Format("Mouse - {0} {1}", a.Name, e.Location);

 Size s0 = new Size(e.X - p.X, e.Y - p.Y);

 if (e.Button == MouseButtons.Left)

 if ((e.Button & MouseButtons.Left) != 0)

 {

 Point p0 = a.Location + s0;

 a.Location = new Point(Math.Max(0, p0.X), Math.Max(0, p0.Y));

 }

 else if (e.Button == MouseButtons.Right)

 else if ((e.Button & MouseButtons.Right) != 0)

 {

 s0 += s;

 a.Size = new Size(Math.Max(50, s0.Width),

 Math.Max(20, s0.Height));

 }

}

private void panel1_MouseUp(object sender, MouseEventArgs e)

{

 (sender as Panel).Cursor = null;

 Panel a = sender as Panel;

 if ((MouseButtons & MouseButtons.Left) != 0)

 a.Cursor = Cursors.Hand;

 else if ((MouseButtons & MouseButtons.Right) != 0)

 a.Cursor = Cursors.SizeNWSE;

 else

 a.Cursor = null;

}

89

Result. Pressing and releasing any mouse buttons in any order on a free

part of the form does not change the cursor. When you press and release any

mouse buttons in any order on the panels, the cursor view always corresponds to

the correct mode: this is the drag mode if the left button is pressed (even if the

right button is pressed at the same time) and this is the resize mode if the right

button is pressed and the left button is released. You can even press or release

the mouse wheel, which in this respect also behaves like a button – the middle

mouse button; this will not affect the operation of the program in any way (see

also Comment 1).

Disadvantage. If you press the right and left buttons on some panel and

then release one of them and move the mouse cursor outside the panel (for ex-

ample, move the cursor outside the entire form), the current mode (dragging or

resizing) will stop working, and the form title changes to Mouse. The current

mode resumes working if you move the mouse back to the panel.

This behavior of the program means that the mouse capture mechanism

stops working. This is because the capture of the mouse by the current control is

canceled if at least one of the pressed buttons is released. In our program, it

would be more convenient to cancel the mouse capture only if all the mouse but-

tons are released.

Correction. Define a handler for the MouseCaptureChanged event for the

form and then connect that handler to the MouseCaptureChanged event for each

panel:
private void Form1_MouseCaptureChanged(object sender,

 EventArgs e)

{

 Control c = sender as Control;

 if (!c.Capture && MouseButtons != MouseButtons.None)

 c.Capture = true;

}

Result. Now the mouse capture for both the form and the panels is canceled

only when all mouse buttons are released (see Comments 2 and 3).

Comments
1. To correctly determine the required mode and cursor, it is not enough to

know which button was pressed or released; it is also necessary to determine

which buttons remain pressed. To do this, we use the MouseButtons property in

the modified versions of the panel1_MouseDown and panel1_MouseUp methods.

MouseButtons is a static property of the Control class; it allows to determine

which mouse buttons are pressed at present time (compare the MouseButtons

property with the ModifierKeys property discussed in Section 4.2).

To check if the required mouse button is included in the MouseButtons or

e.Button enumerations, we use the operator & (bitwise AND).

90

2. To change the default mouse capture mechanism, we used the Capture

property of bool type. Any visual control has this property; it allows to check if

a given control captures the mouse and it also allows to set or cancel mouse

capture programmatically. The Capture property is associated with the

MouseCaptureChanged event; this event is raised when the value of the Capture

property changes.

The Form1_MouseCaptureChanged handler analyzes the situation when the

control cancels the mouse capture (in this case, the value of its Capture property

changes from true to false). If, at the same time, some mouse button remains

pressed (that is, the value of MouseButtons is not equal to MouseButtons.None),

then the mouse capture is restored.

3. In the Form1_MouseCaptureChanged handler, the sender parameter is cast

to the Control type which is the common ancestor of all visual controls. This

makes it possible to connect this handler with controls of various types (and, in

particular, with the form itself).

9.5. Dragging and resizing a control of any type.
Using the find and replace tool

Place a button (named button1) and a label (named label1) on Form1 and set

the label properties:

Properties
label1: AutoSize = False, BorderStyle = FixedSingle,

 TextAlign = MiddleCenter

Adjust the size of the button and label in accordance with Fig. 9.2.

Fig. 9.2. The final view of Form1

Connect handlers panel1_MouseDown, panel1_MouseMove, panel1_MouseUp,

and Form1_MouseCaptureChanged to the appropriate events (MouseDown,

MouseMove, MouseUp, and MouseCaptureChanged) for button1 and label1.

In the text of the Form1.cs file, replace the word Panel with the word Con-

trol. To do this, go to the beginning of this file and press the Ctrl+H key combi-

nation. In the find and replace bar that appears, input the text Panel in the first

text box, the text Control in the second text box, switch on the Match whole

91

word button , and click the Replace all button (Fig. 9.3). After all the

replacements have been completed, a window will appear with information that

six found words have been replaced (all these words are contained in three iden-

tical statements Panel a = sender as Panel located at the beginning of the pan-
el1_MouseUp, panel1_MouseDown, and panel1_MouseMove methods). Press Esc to

close the find and replace bar.

Fig. 9.3. Find and replace bar

Result. The added controls (button1 and label1) are processed in the same

way as panels panel1 and panel2: their size and position can be changed with the

mouse.

Comments

1. In the panel1_MouseUp, panel1_MouseDown, and panel1_MouseMove

handlers, the same action is now performed as in the handler

Form1_MouseCaptureChanged: the sender parameter is cast to the Control type.

Note that these methods use only the properties and methods of the sender pa-

rameter that the Control class has (otherwise a compiler error would occur).

2. Since find and replace operations are often useful when viewing and ed-

iting program code, let us note some of the related capabilities.

To quickly find the required text, it is convenient to use the Incremental

Search mode activated by the Edit | Advanced | Incremental Search menu

item or the Ctrl+I key combination. When this mode is active, the mouse cur-

sor changes to a downward-pointing arrow and is complemented by a binocu-

lar. Now it is enough to input the required text fragment, and, in the process of

input, the first of the found text fragments located below the position of the

keyboard cursor will be highlighted in the file. If the input of a text fragment is

completed, then to repeat search forward, it is enough to press Ctrl+I again,

and to repeat search backward, you should press Ctrl+Shift+I. To exit the In-

cremental Search mode, just press Esc. Note that, even after exiting this

mode, the editor remembers the last input text fragment for search; if, after the

next activation of the Incremental Search mode, you do not type a new text

fragment but immediately press Ctrl+I or Ctrl+Shift+I, then the previously in-

put text fragment will be searched (forward or backward, respectively).

If you need to take into account additional conditions when searching, you

should display the find bar by pressing the Ctrl+F key combination. In addition

to the already mentioned option to search for a whole word (the Match whole

word button or Alt+W), you can also organize a case-sensitive search (the

92

Match case button or Alt+C) and enable the search mode using regular

expressions (the Use Regular Expressions button or Alt+E).

When the find bar is open, to search for the occurrence of the next frag-

ment, just press the Find Next button or the F3 or Enter key. Using the F3

key, the search can be performed even when the find bar is closed. We empha-

size that pressing F3, unlike Ctrl+I, does not require input a fragment and en-

sures that all options specified in the find bar are taken into account when

searching. You can search backward by pressing Shift+F3.

As already noted, the find and replace bar can be displayed on the screen

using the combination Ctrl+H. It contains the same buttons as the find bar. In

the search and replace mode, you can search for the next occurrence of the

fragment (the Find Next button or F3), replace the found occurrence (the

Replace Next button or Alt+R; after performing the replacement, the next

occurrence is immediately searched for) or replace all found occurrences (the

Replace All button or Alt+A).

If the find bar or find and replace bar is active, just press the Esc key to

close it.

93

10. Drag-and-drop: ZOO project

The ZOO project introduces various aspects of the drag-and-drop mode

(activation of the drag-and-drop mode and various options for its completion,

actions when dragging to an invalid target, additional selection of the source and

target, use of special cursors for drag-and-drop mode). In addition, the project

describes how to work with the ImageList (an image storage) control.

10.1. Dragging labels on a form

After creating the ZOO project, place four labels (label1 – label4) on Form1

and set the properties of the form and the added labels:

Properties
Form1: Text = Zoo, MaximizeBox = False,

 FormBorderStyle = FixedSingle, StartPosition = CenterScreen,

 AllowDrop = True

label1: Text = Bear

label2: Text = Wolf

label3: Text = Fox

label4: Text = Hare

Set the position of the labels in accordance with Fig. 10.1.

Fig. 10.1. Form1 view at the initial stage of development

Define an event handler for the MouseDown event for label1 and then con-

nect the created handler to the MouseDown events of labels label2 – label4 (see

Section 6.1 for how to connect handlers to multiple controls).

label1.MouseDown handler
private void label1_MouseDown(object sender, MouseEventArgs e)

{

 if (e.Button == MouseButtons.Left)

 DoDragDrop(sender, DragDropEffects.Move);

}

94

Define the DragEnter and DragDrop event handlers for Form1:

Form1.DragEnter and Form1.DragDrop handlers
private void Form1_DragEnter(object sender, DragEventArgs e)

{

 e.Effect = DragDropEffects.Move;

}

private void Form1_DragDrop(object sender, DragEventArgs e)

{

 Label src = e.Data.GetData(typeof(Label)) as Label;

 src.Location = PointToClient(new Point(e.X, e.Y));

}

Result. Labels with the names of animals can be dragged using the left

mouse button. When you drag the label (the source of the drag-and-drop), it

stays in place, but the mouse cursor changes to indicate the drag-and-drop mode.

Only the form itself is defined as the receiver (that is, the target of the drag-and-

drop): when the mouse button is released over it, the label being dragged moves

to the specified position (see Comments 1 and 2).

Remark. In this project, we use the src and trg names for the source and

target objects, respectively, in the program code of the drag-and-drop handlers.

Disadvantage 1. It is allowed to drag a label not only to the free part of the

form, but also to another label; this dragging overlaps two labels.

Correction. Set the AllowDrop property to True for all labels.

Result. When moving one label to another, the mouse cursor takes the form

of a prohibition sign (see Comment 3).

Disadvantage 2. At the initial moment of dragging, the cursor takes the

form of a prohibition sign.

Correction. Define the DragEnter event handler for label1 and then connect

the created handler to the DragEnter events of label2 – label4:

label1.DragEnter handler
private void label1_DragEnter(object sender, DragEventArgs e)

{

 if (e.Data.GetData(typeof(Label)) == sender)

 e.Effect = DragDropEffects.Move;

 else

 e.Effect = DragDropEffects.None;

}

Result. At the start of dragging, the mouse cursor has a standard view for

the drag-and-drop mode. Dragging one label onto another is still prohibited (see

Comment 4).

95

Comments

1. To start the drag-and-drop mode, any control has the DoDragDrop method

with the first parameter specifying the drag source (that is, the object that will

be accepted by the drag-and-drop receiver). The second parameter (of

DragDropEffects type) is the allowed result (effect) of a successful drag-and-

drop. There are three main effects: Copy, Move, and Link (their names are as-

sociated with actions when dragging files). If during dragging one of several

effects can occur (for example, Copy or Move), then, as the second parameter,

you must specify all these effects, combining them with the operator | (bitwise

OR), for example, DragDropEffects.Copy | DragDropEffects.Move. There is also

a DragDropEffects.All enumeration member that combines all the available ef-

fects.

The drop-and-drop receiver (the target) can only select an effect that is in-

cluded in the set of allowed effects specified as the second parameter of the

DoDragDrop method (in the handler of any drag-and-drop event, the target can

determine which effects are allowed using the e.AllowedEffect property). The

target can also set the effect to None, meaning that it “refuses” to accept the

source. The effect selected by the target determines the appearance of its cursor

in the drag-and-drop mode; in particular, if the target has selected the None ef-

fect, then its cursor will look like a prohibition sign .

In order for a control to act as a target, its AllowDrop property must be set to

True. Only then will the control be able to respond to drag-and-drop events (in

particular, DragEnter, DragOver, and DragDrop).

The DragEnter event occurs when the drag source appears over the target,

the DragOver event occurs when the drag source is moved over the target. With-

in these handlers, the target must determine whether it can accept the source

and set the e.Effect property to the value of the corresponding effect. If, when

the source is moved over the target, the availability of the target cannot change

(as in our program), then the DragOver event handler need not be defined; in

such a situation, the availability of the receiver is determined by the value of

the e.Effect property set in the handler for the DragEnter event. The DragDrop

event occurs when the source is dropped over the target and only if the target

can receive the source.

In the handler for any drag-and-drop event, you can access the source ob-

ject. To do this, call the GetData method of the e.Data object and specify the

source format (an expression of Type or string type) as a parameter. The result

returned by the GetData method is of object type, so it must be explicitly cast to

the actual type of the source. In a situation where the type of the source is not

known in advance, the receiver can obtain the necessary information using the

GetFormats method of the e.Data object (without parameters), which returns an

array of strings containing the names of the available data formats for the

source (since the source can provide data in several formats). In our case, the

96

call to the GetFormats method would return an array of one element: the string

"System.Windows.Forms.Label", which is the full name of the source type. Note

that this name may also be specified as a parameter to the GetData method in-

stead of typeof(Label).
2. To move the label to a new location, we need to know the position of the

mouse cursor where the label is “dropped”. This position is contained in the e.X

and e.Y properties (unfortunately, the Location composite property of Point type

is not provided for the parameter e of DragEventArgs type). When working with

the X and Y properties, take into account that they determine the position of the

mouse cursor in screen coordinates. To convert screen coordinates to coordi-

nates associated with the client area of a control or form, you can use the

PointToClient method. There is also the PointToScreen method that allows you to

convert the local coordinates of the control to screen coordinates.

3. By setting the form’s AllowDrop property to True, we made the form

a valid target. Since the AllowDrop property for labels remained False (the de-

fault value), the labels were not considered as valid targets; this means that

they are invisible for the drag-and-drop mode. Therefore, when the mouse cur-

sor in drag-and-drop mode passes over the label controls, it is assumed to be

above the form, and the DragEnter and DragDrop events occur for the form. If

the source is dropped at this moment, then this source will overlap the label lo-

cated under it (Disadvantage 1). When the AllowDrop properties of the labels are

set to True to correct the noted disadvantage, they became visible for the drag-

and-drop mode. Since a DragEnter handler for these controls has not yet been

defined, it was assumed that they could not accept a drag-and-drop source, so

the cursor over them looks like a prohibition sign.

4. The conditional statement of the label1_DragEnter method checks if the

source object (determined using the GetData method) and the target object (the

sender parameter) are the same. Note that in such a checking it is not necessary

to cast the specified objects to the Label type, since it is not necessary to know

actual types of two objects to compare them for identity.

10.2. Dragging labels to text boxes

Place four text boxes (textBox1 – textBox4) on Form1 and adjust their posi-

tion in accordance with Fig. 10.2.

Fig. 10.2. Form1 view at the intermediate stage of development

97

For each text box, clear its Text property and set the ReadOnly and AllowDrop

properties to True (the ReadOnly = True setting prevents the user from editing

the text in the text box, but does not affect the ability to programmatically

change the text).

Define the DragEnter and DragDrop event handlers for textBox1 and then con-

nect the created handlers to the DragEnter and DragDrop events of textBox2 –

textBox4:

textBox1.DragEnter and textBox1.DragDrop handlers
private void textBox1_DragEnter(object sender, DragEventArgs e)

{

 if ((sender as TextBox).Text == "")

 e.Effect = DragDropEffects.Move;

 else

 e.Effect = DragDropEffects.None;

}

private void textBox1_DragDrop(object sender, DragEventArgs e)

{

 Label src = e.Data.GetData(typeof(Label)) as Label;

 (sender as TextBox).Text = src.Text;

 src.Visible = false;

}

Result. Any empty text box (“an empty cage”) can also be a valid drag-

and-drop target. When dragging a label onto an empty text box, “the animal en-

ters the cage” (that is, the label text is displayed in the text box). Dragging and

dropping a label onto an already filled text box is prohibited (although this ac-

tion will become available in the next section).

10.3. Interaction of labels

Using the Properties window, set the Tag property values for all controls

placed on the form: label1 – 3, label2 – 2, label3 – 1, label4 – 0, textBox1–

textBox4 – 0. After setting the Tag properties, load the Form1.Designer.cs file

into the editor (just double-click on its name in the Solution Explorer window),

expand the Windows Form Designer generated code section in this file, and

correct all 8 statements that set the Tag property values by removing the quotes

from them. For example, the text
this.label1.Tag = "3";

should be replaced with

this.label1.Tag = 3;

Modify the label1_DragEnter and textBox1_DragDrop methods:
private void label1_DragEnter(object sender, DragEventArgs e)

{

 e.Effect = DragDropEffects.Move

98

}

private void textBox1_DragDrop(object sender, DragEventArgs e)

{

 Label src = e.Data.GetData(typeof(Label)) as Label;

 (sender as TextBox).Text = src.Text;

 TextBox trg = sender as TextBox;

 if ((int)src.Tag >= (int)trg.Tag)

 {

 trg.Text = src.Text;

 trg.Tag = src.Tag;

 }

 src.Visible = false;

}

Define the DragDrop event handler for label1, then connect the created han-

dler to the DragDrop events of label2 – label4:

label1.DragDrop handler
private void label1_DragDrop(object sender, DragEventArgs e)

{

 Label src = e.Data.GetData(typeof(Label)) as Label;

 Label trg = sender as Label;

 if ((int)src.Tag > (int)trg.Tag)

 {

 src.Location = trg.Location;

 trg.Visible = false;

 }

 else

 src.Visible = false;

}

Also connect the label1_DragEnter handler to the DragEnter events of

textBox1 – textBox4. After performing this action, the textBox1_DragEnter method

will no longer be associated with any event, so its description in the Form1.cs

file can be deleted.

Result. When dragging the name of one animal onto the name of another,

the stronger animal “eats” the weaker one. The same happens if one of the ani-

mals is dragged into a cage already occupied by another animal. Note that now

the DragEnter events of all controls (both labels and text boxes) are associated

with the same label1_DragEnter handler.

Remark. It would be possible to connect the DragEnter events of all con-

trols to the Form1_DragEnter handler, since it performs the same actions. We used

a separate handler for the controls, because later we will make some changes to

the Form1_DragEnter method (see Section 10.5).

99

Error. If, when dragging a label, drop it over itself, the label will disap-

pear. Thus, the animal eats itself.

Correction. In the label1_DragDrop method, before the statement
if ((int)src.Tag > (int)trg.Tag)

insert the following statement:

if (src == trg) return;

Comments
1. The Tag property determines the relative strength of the animals. When

an animal is placed in a cage, information about the strength of the animal is

stored in the Tag property of the cage (that is, a control of TextBox type). In or-

der to preserve the possibility of placing an animal in an empty cage, the Tag

properties of all text boxes are set equal to 0 at the beginning of the program.

In our case, it is convenient to store data of integer type in the Tag properties,

but when setting the Tag property using the Properties window, a string value

is assigned to it. This leads to the need to adjust the Form1.Designer.cs file.

Note that after such an adjustment, the values of the Tag properties in the

Properties window are displayed correctly, however, any their change in the

Properties window will leads to saving the changed Tag value as a string.

2. When defining a new value for src.Location in the label1_DragDrop meth-

od, you could have used the e.X and e.Y parameters (as in the Form1_DragDrop

method), but it is easier to use the Location property of the trg variable. In addi-

tion, this way allows to place the source label exactly in the position of the tar-

get label, regardless of where the mouse button was released at the target.

10.4. Actions in case of dragging to invalid target

Modify the label1_MouseDown method:
private void label1_MouseDown(object sender, MouseEventArgs e)

{

 if (e.Button == MouseButtons.Left)

 if (DoDragDrop(sender, DragDropEffects.Move) ==

 DragDropEffects.None)

 (sender as Label).Visible = false;

}

Result. If dragging of the label-“animal” ends outside the form (in this case

the cursor looks like a prohibition sign), the animal “runs away from the zoo”

and its label on the form disappears.

Comment
The DoDragDrop method (which activates the drag-and-drop mode) finishes

only when the drag-and-drop mode ends; this method returns the effect that

ended the drag. In particular, if it returns the DragDropEffects.None value, it

means that the source is dropped over an invalid target, that is, at the moment

when the mouse cursor looks like a prohibition sign. In our program, all con-

100

trols on the form (and the form itself) are valid targets, so the DoDragDrop

method will return DragDropEffects.None only when the source is dropped out-

side the form.

10.5. Additional coloring of source and target while dragging

Modify the label1_MouseDown and label1_DragEnter methods as follows:
private void label1_MouseDown(object sender, MouseEventArgs e)

{

 if (e.Button == MouseButtons.Left)

 {

 Label src = sender as Label;

 src.ForeColor = Color.Blue;

 if (DoDragDrop(sender, DragDropEffects.Move) ==

 DragDropEffects.None)

 (sender as Label).Visible = false;

 src.Visible = false;

 src.ForeColor = SystemColors.ControlText;

 }

}

private void label1_DragEnter(object sender, DragEventArgs e)

{

 e.Effect = DragDropEffects.Move;

 (sender as Control).BackColor = Color.Yellow;

}

Add the following statement to the label1_DragDrop and textBox1_DragDrop

methods:

trg.BackColor = SystemColors.Control;

Define an event handler for the DragLeave event for label1 and then connect

the created handler to the DragLeave events of label2 – label4 and textBox1 –

textBox4.

label1.DragLeave handler
private void label1_DragLeave(object sender, EventArgs e)

{

 (sender as Control).BackColor = SystemColors.Control;

}

Result. In the drag-and-drop mode, the text color of the source label chang-

es to blue, the current target control (label or text box) is displayed on a yellow

background (see Comment 1).

Disadvantage. When you click on any of the labels, its background color

changes to yellow.

Correction. In the label1_DragDrop method, move the statement you just

added to it

101

trg.BackColor = SystemColors.Control;

to a position in front of the statement
if (src == trg) return;

Result. Now clicking on the label does not change its appearance (see

Comment 2).

Comments
1. For additional highlighting of a drag-and-drop source, it is enough to ad-

just its properties before calling the DoDragDrop method. The changed proper-

ties should be restored after finishing this method (that is, after ending the

drag-and-drop mode). To highlight the current target, change its properties in

the DragEnter event handler and restore it in the DragLeave event handler, which

occurs when the mouse cursor leaves the current target. Note that in the case of

an invalid target, the DragLeave event occures when the drag-and-drop mode

ends over this target. If the drag-and-drop mode finishes over a valid target,

then the DragLeave event does not occur, and the DragDrop event handler must

be used to restore the target properties.

Note that the label1_DragEnter and label1_DragLeave handlers are used for

both labels and text boxes. This is possible because the Control class (which is

the common ancestor of both labels and text boxes) has a BackColor property

that we want to change. Thus, in these handlers, it suffices to cast the sender
parameter to the Control type. In the case of the label1_DragLeave handler, we al-

so take advantage of the fact that labels and text boxes (in read-only mode)

have the same standard SystemColors.Control background color.

2. The noted disadvantage is related to the fact that, when the button is

clicked, the MouseDown event occurs and the label1_MouseDown handler for this

event starts the drag-and-drop mode, which ends immediately when the mouse

button is released. In this case, the label becames a drag-and-drop target, that

is, the DragEnter event occures for it, leading to the background color changing.

However, the background color is not restored in the label1_DragDrop handler,

since the exit from this handler occurs immediately after the src == trg condition

is satisfied. Thus, to correct the disadvantage, it is enough to restore the back-

ground color before checking this condition.

10.6. Customizing the cursor in drag-and-drop mode

Define the GiveFeedback event handler for Form1:

Form1.GiveFeedback handler
private void Form1_GiveFeedback(object sender,

 GiveFeedbackEventArgs e)

{

 e.UseDefaultCursors = false;

 Cursor.Current = e.Effect == DragDropEffects.Move ?

 Cursors.Hand : Cursors.No;

102

}

Result. In the drag-and-drop mode, the mouse cursor looks like a “pointing

hand” or, outside the form, like a prohibition sign.

Comments
1. The GiveFeedback event of the Form class is provided to change the ap-

pearance of the cursor in the drag-and-drop mode. You can determine the cur-

rent drag effect in this event handler using the e.Effect property. Depending on

the effect, you can set the new cursor, but before that you must disable the dis-

play of standard drag-and-drop cursors by setting the e.UseDefaultCursors prop-

erty to false. The required cursor must be assigned to the Current static property

of the Cursor class.

2. The .NET help system says that the Cursor.Current static property allows

to determine and change the current cursor. This is only partly true. Indeed,

calling this property allows to find out how the cursor looks at a given time in

the application. However, you can change the appearance of the cursor using

the Cursor.Current property only in the MouseMove event handler. If you assign

a new value to the Cursor.Current property elsewhere in the program, then this

value will be replaced with the default value as soon as the MouseMove event

occurs in the program. For this reason, this property is rarely used, although the

Cursor.Current property should be changed in the GiveFeedBack event handler.

10.7. Information about the current state of the program.
Buttons with images

Place the button1 on Form1, specify The zoo is closed as its title (that is, the

Text property) and adjust the position of the button in accordance with Fig. 10.3.

Fig. 10.3. The final view of Form1

For greater clarity, add a small image to the left of the button title. This im-

age (like the button title) will depend on the current state of the program.

You can download the Visual Studio Image Library from Microsoft site

(web link https://www.microsoft.com/en-us/download/details.aspx?id=35825). This

collection contains images for buttons associated with various actions. We will

use the Visual Studio 2012 Image Library. After downloading the VS2012

Image Library.zip file with the collection archive, you just need to unzip it.

103

A feature of the Visual Studio 2012 Image Library collection is that it al-

so contains a set of pictures for the version 2010 of Visual Studio (this set is

contained in the x - archive - x subdirectory). The pictures in the 2010 set are

less abstract and more descriptive.

In our project, we will use the Error.bmp and GoLtrHS.bmp

files located in the x - archive - x\Objects - VS2012\bmp_format\Office and

VS subdirectory. To simplify actions to connect these files to the project, it is

advisable to copy the files to the project directory.

Add an ImageList control (named imageList1) to the form. This control is in-

tended to hold a set of uniformly sized images. To add the Error.bmp and

GoLtrHS.bmp images to the imageList1 control, follow these steps:

 select the Images property in the Properties window of the imageList1

control and click the button near this property;

 in the Images Collection Editor window that appears on screen, click

the Add button and select the Error.bmp file in the Open window that

appears (as a result, the Error.bmp file will be added to the Images col-

lection);

 add the GoLtrHS.bmp image to the collection using the same actions

and then close the Images Collection Editor window by clicking the

OK button or pressing the Enter key.

Configure the rest of the required properties of the imageList1 and button1

controls (when setting the ImageAlign property of the button1 control, select the

square located in the middle- left corner in the panel that appears):

Properties
imageList1: TransparentColor = Magenta

button1: ForeColor = Red, ImageList = imageList1,

 ImageKey = Error.bmp, ImageAlign = MiddleLeft

Modify the label1_MouseDown method by adding the following statements:

string s = "";

for (int i = 1; i <= 4; i++)

{

 if (Controls["label" + i].Visible)

 // at least one of the animal is free

 return;

 s = s + (Controls["textBox" + i].Text);

}

if (s == "")

 // all cages are empty

 return;

button1.Text = "The zoo is open";

button1.ForeColor = Color.Green;

104

button1.ImageKey = "GoLtrHS.bmp";

Result. If all labels on the form have disappeared and at least one text box

contains text (the name of some animal), then the button displays the text the

Zoo is open and the color of the button changes from red to green (see Com-

ments 1 and 2).

Remark. The new version of the label1_MouseDown method uses the Con-
trols collection property of the form to iterate over all labels and all text boxes.

Disadvantage. Dragging a label onto button1 causes the label to become in-

visible since it is overlapped by the button.

Correction. Set the AllowDrop property of button1 to True and connect the

Form1_DragEnter handler to the button’s DragEnter event.

Result. Now, when you try to drag a label onto button1, nothing happens:

the label remains in the same place (see Comment 3).

Comments
1. Pay attention to the TransparentColor property of the ImageList control. In

a bmp-image intended to be placed on button, one of the colors (usually very

bright and therefore not using) plays the role of an indicator of a transparent

color: this color marks those fragments of the image through which the control

containing this image should be visible. In the Visual Studio 2010 Image Li-

brary, the color magenta (R = 255, G = 0, B = 255) is used as this indicator of

a transparent color (in the KnownColor enumeration, this color is represented by

two synonym elements: Magenta and Fuchsia). If the TransparentColor property

is left at the default value (Transparent), then excess magenta fragments will be

displayed on the edges of the images.

2. To indicate which image from the ImageList set should be connected to

the control, you can use not only the ImageKey string property containing the

name of the image (as in the last statement in the modified label1_MouseDown

method), but also the ImageIndex integer property containing the index of the

image in the set (elements are indexed from 0). So, you could connect the

GoLtrHS.bmp image to button1 using the button1.ImageImdex = 1 statement. In-

dices are convenient to use when connecting different images to several con-

trols in a loop.

3. The noted disadvantage is due to the fact that by default the AllowDrop

property of the button is equal to False and therefore the button is invisible for

the drag-and-drop mode. Note that simply changing the value of the AllowDrop

property to True is not enough: in this case, the button will behave like an in-

valid target, and therefore the label released over the button will disappear

from the form, since this is the action that our program performs when we try

to release the source over an invalid target (see Section 10.4). Connecting the

button’s DragEnter event to the Form1_DragEnter handler solves the problem,

since, in this case, the button becomes a valid target with the Move effect, alt-

105

hough it does nothing when the source is released over it (since there is no

DragDrop event handler associated with the button).

10.8. Restoring the initial state

Define handlers for the Load event for Form1 and the Click event for button1:

Form1.Load and button1.Click handlers
private void Form1_Load(object sender, EventArgs e)

{

 for (int i = 1; i <= 4; i++)

 Controls["label" + i].Location =

 Controls["textBox" + i].Location -

 new Size(0, textBox1.Top / 2);

 ActiveControl = button1;

}

private void button1_Click(object sender, EventArgs e)

{

 Form1_Load(this, null);

 for (int i = 1; i <= 4; i++)

 {

 Controls["label" + i].Visible = true;

 Control c = Controls["textBox" + i];

 c.Text = "";

 c.Tag = 0;

 }

 button1.Text = "The zoo is closed";

 button1.ForeColor = Color.Red;

 button1.ImageKey = "Error.bmp";

}

Result. The initial position of the labels-“animals” is now determined pro-

grammatically, namely, in the Load event handler of the form (the labels are lo-

cated above the corresponding text boxes and aligned to their left border). Fur-

ther, when you press button1, the initial position of the “animals” is restored and

the “cages” are released. In addition, when the program starts, the button1 be-

comes active, which results in a red border around it (the color of the border

around the active button is determined by the ForeColor color of its caption).

Remark. In these methods, the items from the Controls collection are not

cast to their actual type (Label or TextBox). This is not necessary, since all the

control properties used in these methods are already defined in the Control class,

which is the common ancestor of all visual controls (recall that the Controls col-

lection returns elements of Control type).

106

Comment
The Load event of a form occurs only once, after the form’s constructor fin-

ishes but before the form is displayed on the screen. This event is especially

useful if situations are possible when, after starting the program, instead of dis-

playing the form, you need to display an error message and immediately termi-

nate the program (here is an example of such a situation: the demo program

found that the trial time has expired; see also Section 23.5). Although such sit-

uations can be detected already in the form’s constructor, you cannot call the

Close method from the form’s constructor since this will result in a run-time er-

ror. In order to correctly terminate the program before the form appears on the

screen, you should call the Close method in the Load event handler.

It also makes sense to place a piece of code that performs some initializing

actions in the Load event handler (not in the form’s constructor) if the program

may need to repeat these initializing actions in the future. In such a situation, it

is sufficient to explicitly call the Load event handler, as is done in the but-
ton1_Click method.

107

11. Cursors and icons: CURSORS project

The CURSORS project introduces the use of cursors (the Cursor and Cursors

classes) and icons (the Icon class) in an application. It also provides an introduc-

tion to generics and how to embed graphical resources into an application. Also

we consider the NotifyIcon control for working with the traybar of the Windows

taskbar.

11.1. Using standard cursors

After creating the CURSORS project, place the button (named button1) on

Form1 and configure the properties of the form and the added button (see also

Fig. 11.1):

Properties
Form1: Text = Cursors and Icons, MaximizeBox = False,

 FormBorderStyle = FixedSingle, StartPosition = CenterScreen

button1: Text = Default

Fig. 11.1. Form1 view at the initial stage of development

Add two field declarations to the beginning of the Form1 class declaration:

private List<string> str = new List<string>(30);

private List<Cursor> cur = new List<Cursor>(30);

Add new statements to the constructor of the Form1 class:
public Form1()

{

 InitializeComponent();

 foreach (System.Reflection.PropertyInfo pi in

 typeof(Cursors).GetProperties())

 {

 str.Add(pi.Name);

 cur.Add((Cursor)pi.GetValue(null, null));

 }

108

 button1.Tag = str.IndexOf("Default");

}

Define an event handler for the MouseDown event for button1:

button1.MouseDown handler
private void button1_MouseDown(object sender, MouseEventArgs e)

{

 int k = (int)button1.Tag,

 c = str.Count;

 switch (e.Button)

 {

 case MouseButtons.Left:

 k = (k + 1) % c; break;

 case MouseButtons.Right:

 k = (k - 1 + c) % c; break;

 }

 button1.Text = str[k];

 button1.Cursor = cur[k];

 button1.Tag = k;

}

Result. Clicking on the Default button changes the cursor for this button;

this action also changes the button title to the name of the current cursor. All

28 standard cursors are selected cyclically; the order of cursors corresponds to

the order of their position in the drop-down list for the Cursor property in the

Properties window. When you press not the left mouse button, but the right

mouse button, the cursors are selected in reverse order.

Comments
1. All standard cursors can be accessed using the Cursors class, which has

a special read-only property for each standard cursor. The Cursors class lacks

the facility to loop through the standard cursors or to retrieve their names.

Therefore, in the constructor of the form, we create two collections of the ge-

neric List<T> type: the str collection, which contains the names of all the stand-

ard cursors, and the cur collection, which contains the cursors themselves (that

is, objects of Cursor type). Collections are formed using the reflection mecha-

nism applied to the Cursors class. The reflection mechanism is not considered

in detail in this book (you can familiarize yourself with it, for example, in

[3, Chapter 19]); we only note that it defines an array of PropertyInfo objects,

each of which contains information about a property of the Cursors class, and

then the foreach loop iterates over these objects and extracts information about

the names and values of the corresponding properties of the Cursors class.

2. With the generic classes introduced in .NET 2.0, you can easily create

typed collections (such as the List<T> class) defined in the System.Collections.

109

Generic namespace. When declaring collections of List<T> type, you must im-

mediately specify the type T of their elements. In our program, the str collection

is declared as List<string>, that is, it is intended for storing string elements, and

the cur collection is declared as List<Cursor> and is intended for storing ele-

ments of Cursor type.

In earlier versions of .NET, you could only use collections that were con-

sidered to be objects of the base object type (an example of such a collection is

the ArrayList class defined in the System.Collections namespace). The use of such

collections was potentially dangerous, since errors related to mismatch of type

of elements added to the collection could be detected only at the stage of appli-

cation execution. In addition, using such collections was inconvenient, since,

when accessing their elements, it was required to explicitly convert the ele-

ments to the required type. Generic collections are more reliable (they cannot

contain data whose type differs from the type of collection elements, since er-

rors of this kind are detected already at the compilation stage) and are more

convenient to use (since when accessing collection elements, there is no need

to perform type conversion). Chapter 7 of the book [3] is devoted to a detailed

examination of generics; see also Chapter 9 in [2].

3. We save the index of the cursor associated with button1 in the Tag prop-

erty of this button. Any visual control has the Tag property; it can be used to

store some of its additional characteristics (see also Section 10.3). Since the

Tag property is of object type, it can be assigned a value of any type; however,

when reading its value, you must perform an explicit conversion to the actual

type of the object it contains (in our case, to the int type). The last statement in

the form’s constructor sets the Tag property of button1 to the index of the ele-

ment in the cur collection that corresponds to the default cursor.

4. In the button1_MouseDown method, looping through the indices in the

range from 0 to c (where c = str.Count - 1 and str.Count is equal to the number of

elements contained in the str collection) is performed using the % operator (that

is, taking modulo operator, or taking remainder operator). An additional term c

in the expression (k - 1 + c)% c has been added so that the expression in paren-

theses never takes negative values.

5. To handle clicks on button1, the MouseDown event is used, since the Click

event of the Button control reacts only to the left mouse button (for other con-

trols, the situation may be different; for example, the Click event of the Label
control reacts to a click of any mouse button – see Section 7.3).

11.2. Setting the cursor for a form and waiting mode indication

Place three new buttons (button2, button3, button4) on Form1 and set the Text
properties of these buttons to the Form Cursor, Wait Cursor, and Default

Form Cursor, respectively (Fig. 11.2).

110

Fig. 11.2. Form1 view at an intermediate stage of development

Define event handlers for the Click event for the added buttons:

button2.Click, button3.Click, and button4.Click handlers
private void button2_Click(object sender, EventArgs e)

{

 Cursor = button1.Cursor;

}

private void button3_Click(object sender, EventArgs e)

{

 UseWaitCursor = true;

}

private void button4_Click(object sender, EventArgs e)

{

 UseWaitCursor = false;

 Cursor = Cursors.Default;

}

Result. Clicking the Form Cursor button propagates the action of the new

cursor to the entire form including the buttons on it. Clicking the Wait Cursor

button sets the wait cursor (usually looking as hourglass) for the entire form and

its controls. Clicking the Default Form Cursor button cancels the wait cursor

and restores the default cursor for the form (but not for the first button whose

cursor still matches the name given in its title).

Comments
1. If the Cursor property of the visual control is null or has the Cursors.Default

value, then the cursor type for this control is determined by its parent control

(in our case, the form); for a form, the type of cursor with the Default value is

determined by the operating system. That is why, when changing the cursor for

a form, the cursor automatically changes for button2, button3, and button4 but-

tons, whose Cursor property is equal to Default.
2. Boolean property UseWaitCursor is available for any visual control. If the

UseWaitCursor property of any control is set equal to true, then the current cur-

sor of this control and all its child controls will be replaced with a wait cursor

(hourglass).

111

11.3. Connecting new cursors to the project and saving them
as embedded resources

In addition to standard cursors, you can use other cursors in the program.

Cursor files have the .cur extension; they can be found, for example, in the

Cursors subdirectory of the Windows directory. It should be noted that animat-

ed cursors (files with the .ani extension) cannot be used in the Windows Forms

applications, and colored cursors are displayed as monochrome when used in

such applications. The icon of any cur-file corresponds to the image of the cur-

sor contained in that file; this allows you to quickly familiarize yourself with the

contents of cur-files using the Explorer or My Computer applications.

Select any two cur-files containing monochrome cursors and copy them in-

to the CURSORS project directory under the names C1.cur and C2.cur.

Execute the Project | Add Existing Item… menu command. In the dialog

box that appears, enter the name of the C1.cur file (you can do this directly in

the text box; you can also specify the All Files option in the drop-down list of

file types and select the C1.cur file from the list of all files contained in the di-

rectory). Press the Enter key or the Add button. This will add the C1.cur file to

the CURSORS project, as you can verify by looking at the Solution Explorer

window.

Select the C1.cur file in the Solution Explorer window; this will display

its properties in the Properties window. Set the Build Action property to Embed-

ded Resource; no other properties need to be changed.

Add the C2.cur file to the project in the same way and set its Build Action

property.

Add new statements to the constructor of the Form1 class:

for (int i = 1; i <= 2; i++)

{

 str.Add("C" + i);

 cur.Add(new Cursor(GetType(), "C" + i + ".cur"));

}

Result. When creating a form, new cursors are loaded into the program and

added to the list of available cursors under the names C1 and C2. Further they

are processed in the same way as standard cursors (see Sections 11.1 and 11.2).

It should be emphasized that the images of these cursors are located directly in

the CURSORS.exe executable file.

Comments

1. To load the cursor from the application resources, a version of the Cursor
class constructor with two parameters is used; the first parameter usually has

the form GetType(), and the second specifies the name of the corresponding re-

source. You can also load the cursor directly from the cur-file; the correspond-

ing constructor of the Cursor class has one parameter, which is the file name (if

112

the cur-file is contained in the working directory of the application, then the

path to the file can be omitted).

2. The Visual Studio environment has built-in tools to create new cursors

and edit existing ones. To create a new cursor (and immediately bind it to the

current project), just execute the Project | Add New Item… menu command.

In the window that appears, specify the type of the new element (Cursor file)

and its name, then press the Enter key or the Add button. A template for the

monochrome cursor with the specified name will be created and loaded imme-

diately into the environment editor.

You can edit the cursor image using various tools whose shortkey buttons

are displayed on the Image Editor toolbar. To select the color of lines and

background, the Colors window is used; the button for displaying the Colors

window is located at the left border of the Visual Studio window. In the Colors

window, the color of the lines is selected with the left mouse button, the back-

ground is selected with the right mouse button. In addition to black-and-white

patterns that simulate shades of gray, you can select two special colors: green

(corresponds to the transparent part of the cursor) and pink (corresponds to the

part of the cursor, under which the colors will be inverted).

For the created cursor, you need to specify the hot spot, that is, the pixel

that determines the position of the cursor on the screen (for example, in the

case of a standard arrow cursor, its hot spot is the arrowhead). The hot spot is

defined using the Set Hot Spot Tool button on the Image Editor toolbar.

In addition, the coordinates of the hot spot are specified (and can be changed)

in the Properties window.

To edit an existing cursor connected to the project, just double-click on its

name in the Solution Explorer window; as a result, the selected cursor will be

loaded into the image editor.

11.4. Working with icons

Small images called icons are stored in files with the .ico extension. Many

ico-files are contained in the Visual Studio Image Library (see Section 10.7);

also it is easy to find ico-files on your computer and on the internet. The icon for

an ico-file, like the icon for a cur-file, corresponds to the image it contains.

Adding existing ico-files to the project is similar to adding cur-files. The

following steps assume that the Computer.ico and Folder.ico files have been

added to the project (in the Visual Studio 2012 Image Library, they are locat-

ed, for instance, in the x--archive--x\Objects - VS2012\ico_format\WinVista

subdirectory). As with cur-files, after adding the ico-file to the project, set its

Biuld Action property to Embedded Resource.

Place a new button (named button5) on the form and set its Text property to

Icon 0. Add the declaration of the ico array to the beginning of the Form1 class

declaration:

113

private Icon[] ico = new Icon[3];

Add new statements to the constructor of Form1:

button5.Tag = 0;

ico[1] = new Icon(GetType(), "Computer.ico");

ico[2] = new Icon(GetType(), "Folder.ico");

ico[0] = Icon;

Define an event handler for the Click event for button5:

button5.Click handler
private void button5_Click(object sender, EventArgs e)

{

 int k = ((int)button5.Tag + 1) % 3;

 button5.Text = "Icon " + k;

 button5.Tag = k;

 Icon = ico[k];

}

Result. The new Icon 0 button changes the icon of the form both in its title

and on its button located on the Windows taskbar. Icon numbered 0 corresponds

to the initial default icon of the form. The program uses a fixed-size ico array to

store three icons.

Comments
1. The new fragments of the program code show that working with icons

requires the same techniques as working with cursors; you just need to use the

Icon class and the Icon property of the form. You can also download the icon di-

rectly from the ico-file; for this, the Icon class provides a constructor with one

parameter specifying the file name.

2. The icon can be associated not only with the form, but also with the ap-

plication itself; however, the application icon is used only when the corre-

sponding exe-file is displayed in Explorer or similar file browsers that support

the display of icons. To set the application icon, open the tab with project prop-

erties in the Visual Studio editor using the Project | <project name> Proper-

ties… menu command and select the required icon from the Icon drop-down

list located in the Application section.

11.5. Placing an icon of application in the notification area

Place a new button (named button6) on the form, as well as a NotifyIcon con-

trol (this control will be named notifyIcon1), and set their properties (see also

Fig. 11.3):

Properties
button6: Text = Show Tray Icon

notifyIcon1: Text = Icon in Traybar, Visible = False

114

Fig. 11.3. The final view of Form1

Note that the NotifyIcon control is not a visual control, so, when you add it to

a form, it is placed in a special area of non-visual controls located below the

form.

In the constructor of the Form1 class, modify the last statement as follows:

notifyIcon1.Icon = ico[0] = Icon;

In the button5_Click method, modify the last statement as well:

notifyIcon1.Icon = Icon = ico[k];

Define the Click event handler for button6:
private void button6_Click(object sender, EventArgs e)

{

 bool b = button6.Text == "Show Tray Icon";

 notifyIcon1.Visible = b;

 ShowInTaskbar = !b;

 button6.Text = b ? "Hide Tray Icon" : "Show Tray Icon";

}

Result. Clicking button6 hides the form button on the Windows taskbar and

displays its icon in the notification area (traybar) on the right side of the Win-

dows taskbar. When you move the mouse cursor over this icon, the Icon in

Traybar tooltip appears. Pressing button6 again restores the initial form button

on the Windows taskbar.

Comments
1. Statements changed in the constructor of the Form1 class and in the but-

ton5_Click method are of the form variable1 = variable2 = expression. Statements

of this kind allow you to simultaneously assign the specified expression to all

the variables located before it. This possibility is due to the fact that an assign-

ment operator of the form v = expr not only assigns the value of the expression

expr to the variable v, but also returns the assigned value. In addition, it should

be taken into account that, if there are several assignment operators, they are

performed from right to left, that is, in the notation a = b = c, parentheses are

implicitly placed as follows: a = (b = c).
2. Typically, the notification area contains icons for applications running in

the background mode and using windows only to show and change their set-

115

tings. In addition to tooltips that appear when the cursor is moved over the

icon, the NotifyIcon control allows you to display a message in the balloon near

the icon (using the ShowBalloonTip method and related properties BalloonTipIcon,

BalloonTipTitle, BalloonTipText). The NotifyIcon control can also display a context

menu using the right mouse button (the ContextMenuStrip property; working

with context menus is described in Section 14.3). The notification area icon can

also respond to mouse events; to this purpose, the NotifyIcon control provides

a number of events including Click and DblClick.

116

12. Menus and processing of text files:
TEXTEDIT1 project

The TEXTEDIT1 project is the first in a series of projects related to the de-

velopment of a fully functional text editor. This project describes the creation

and configuration of the main application menu (the MenuStrip control) and im-

plements the basic actions with text files (creating, saving, loading, as well as

displaying a request to save changes). The features of the dialog controls

SaveFileDialog and OpenFileDialog and the multi-line version of the TextBox con-

trol are considered.

12.1. Menu creation

After creating the TEXTEDIT1 project, place the MenuStrip and TextBox

controls on Form1 (the added controls will be named menuStrip1 and textBox1)

and set properties of the form and the added controls:

Properties
Form1: Text = Text Editor, StartPosition = CenterScreen

textBox1: Text = empty string, Multiline = True, Dock = Fill

Note that the MenuStrip and TextBox controls should be placed on the form

in the specified order; otherwise (if you first place the TextBox control on the

form), in some early versions of the Windows Forms library, the top of the text

box may be hidden under the menu bar. However, such a mistake can be easily

fixed: it is enough to send the MenuStrip control to the back using the Send to

Back button of the Layout panel (this panel can be displayed on the screen us-

ing the menu command View | Toolbars | Layout).

To create a menu in design mode, the menu designer is used, which is acti-

vated when the menuStrip1 control is selected. In the text box with the Type

Here text, input the name of the created menu item. After pressing the Enter

key, a new item will be created in the menu. In addition, new text boxes with the

Type Here text will appear next to and below the created item, allowing you to

create new menu items of the first or second level (see Fig. 12.1; this figure

shows the menu items that will be added later). When a created menu item is se-

lected, the Properties window displays the properties of this item.

Each MenuStrip item is a ToolStripMenuItem object. The name of the menu

item (unlike the names of other controls placed on the form) is obtained not by

adding an order number to the type name (for example, label1), but by adding the

name of the menu item to the left of the type name, for example,

fileToolStripMenuItem. As a result, very long names are obtained, so immediately

after creating a menu item, it is advisable to change the name of the item by

117

specifying the new value of its Name property. Note that the Name property is

located in the Properties window at the top of the property list and its title is

enclosed in parentheses: (Name).

Figure: 12.1. Form1 view with the menu designer

In order to make the relation between the menu item and its name clearer,

we will use, as the menu item name, the text of this item typed with a small let-

ter and supplemented with the number 1 (for example, for the File item, we

specify the file1 name). The number allows us to avoid possible conflicts with

the key words of C#; in addition, we will further associate some commands not

only with menu items but also with shortcut buttons or context menu items; for

the names of these controls, it will be convenient to use the name of the same

command supplemented with a different number (see Sections 14.3 and 15.1).

Create a first-level &File menu item in the menuStrip1 control and use the

Properties window to change the name of this item (that is, the Name property)

to file1. In the drop-down menu associated with the File menu item, create four

items with the following text: &New, &Open, &Save, Save &As. Then create

an item with the text - (dash); this item will be converted to a horizontal separa-

tor. Below the separator, create another menu item with the E&xit text. Set the

properties of the added menu items as follows (note that the values for the

ShortcutKeys property are easier and faster to input directly from the keyboard

than using the drop-down list):

New (the File group): Name = new1, ShortcutKeys = Ctrl+N

Open (the File group): Name = open1, ShortcutKeys = Ctrl+O

Save (the File group): Name = save1, ShortcutKeys = Ctrl+S

Save As (the File group): Name = saveAs1, ShortcutKeys = F12

Exit (the File group): Name = exit1, ShortcutKeys = Alt+F4

The final view of the File group menu is shown in Fig. 12.1.

118

Using the menu designer, you can also define handlers for events associated

with the selected menu item. Select the exit1 menu item and define the Click

event handler for it:

exit1.Click handler
private void exit1_Click(object sender, EventArgs e)

{

 Close();

}

To exit the menu designer, it is enough to select the form itself or some of

its other controls.

Result. Due to the Fill value of the Dock property of the textBox1 control,

the edit area is automatically resized when the window is resized. The program

has a menu with items that can be called using the mouse, shortcut keys (Ctrl+N,

F12, etc.), as well as with using the key combinations Alt+underlined letter in

the item text (if the second-level menu is expanded, then, to select an item, just

press the key corresponding to the underlined character in the item text without

pressing the Alt key). The Exit command closes the application, the other menu

commands do not perform any action yet.

Remark. When starting the program, the text of the first-level menu items

may not contain underscores. In this case, press the Alt key and, without releas-

ing it, wait for the underscore characters to appear; then press the key corre-

sponding to the underlined character. Also note that you can simply press the

F10 or Alt key to go to the menu.

Comments
1. Exit from the program by pressing the Alt+F4 key combination is per-

formed automatically, so there is no need to explicitly specify the shortcut key

for the Exit command. However, such an option increases the clarity of the

program, since it provides the display of the shortcut key name next to the cor-

responding menu item.

2. Although the menuStrip1 control is a descendant of the Control class and

therefore is a visual control, it is located not on the form in design mode, but in

the area below it (recall that this area is intended for placement of non-visual

controls). At the same time, the menu that the menuStrip1 control defines is dis-

played on the form. You can select the MenuStrip control by clicking either on

its image in the area of non-visual controls or on the image of the menu in the

form (outside the existing menu items, since, when you click on a menu item,

this item is selected instead of the menuStrip1 control itself). When the

MenuStrip control is selected, its properties are displayed in the Properties

window.

3. The MenuStrip control appeared in version 2.0 of the .NET Framework

library. Unlike its predecessor, the MainMenu control, which was an object

wrapper for the Windows traditional menu, the MenuStrip control is not associ-

119

ated with the Windows menu and is a “usual” visual control. This allows, in

particular, to dock the MenuStrip control to any window border and provides

more flexible customization of the menu’s appearance (for example, you can

change its font by simply setting the Font property, which is not possible for the

MainMenu control). Items of the MenuStrip menu (which are objects of

ToolStripMenuItem type) have a richer set of properties than the items of the

“old” MainMenu control. In particular, they have the Tag property, as well as the

Image property, which provides adding an icon to the text of a menu item. For

these reasons, the old MainMenu control has been removed from the list of con-

trols in the Toolbox window; moreover, this control is not available in .NET

Core 3.1 and later versions.

12.2. Saving text to a file

Add a non-visual control of SaveFileDialog type (named saveFileDialog1) to

Form1; this control will be placed in the non-visual control area below the form

image. Set the properties of the added control (see Comment 1 for the DefaultExt
and Filter properties):

Properties
saveFileDialog1: DefaultExt = txt, Title = Save file

 Filter = Text files|*.txt

At the beginning of the Form1.cs file, insert the directive for introducing

the namespace for classes related to the file input-output:

using System.IO;

In the constructor of the Form1 class, add a statement:

saveFileDialog1.InitialDirectory =

 Directory.GetCurrentDirectory();

Add a new SaveToFile method to the Form1 class:

private void SaveToFile(string path)

{

 File.WriteAllText(path, textBox1.Text);

}

Define the Click event handlers for the saveAs1 and save1 menu items:

saveAs1.Click and save1.Click handlers
private void saveAs1_Click(object sender, EventArgs e)

{

 if (saveFileDialog1.ShowDialog() == DialogResult.OK)

 {

 string path = saveFileDialog1.FileName;

 SaveToFile(path);

 Text = "Text Editor - " + Path.GetFileName(path);

 }

120

}

private void save1_Click(object sender, EventArgs e)

{

 string path = saveFileDialog1.FileName;

 if (path == "")

 saveAs1_Click(saveAs1, null);

 else

 SaveToFile(path);

}

Result. When the Save As... command is executed, the Save file dialog box

appears (the program’s working directory is selected as the initial directory for

file saving). If you specify a file name in the dialog box and click the Save but-

ton or press the Enter key, then the text from the editor will be saved in this file,

and the file name will appear in the title bar of the program window. By default,

the file name is supplied with the .txt extension. When executing the Save

command, the file name is not prompted, unless the text has not yet been saved.

When you exit the Save file dialog box by clicking the Cancel button or

pressing the Esc key, the text is not saved to the file. When you try to save the

text under the name of an existing file, you are prompted to confirm this action.

If you specify a directory that does not exist, a warning message is displayed,

but the dialog box does not close and the error can be corrected immediately.

Comments
1. To display on the screen a standard dialog box associated with the

SaveFileDialog control (or the OpenFileDialog control which will be considered

later), you must call the ShowDialog method of this control. If the dialog box is

closed by the Save button (for SaveFileDialog) or by the Open button (for

OpenFileDialog), then the ShowDialog method returns DialogResult.OK and the

name of the selected file is saved in the FileName property. If the dialog is

closed by the Cancel button, then the ShowDialog method returns

DialogResult.Cancel. Note that all forms have the ShowDialog method (see Sec-

tions 5.1 and 5.4).

Of the frequently used properties of the SaveFileDialog and OpenFileDialog

controls, note the following:

 DefaultExt (the default file extension; the dot at the beginning of the exten-

sion is not indicated);

 Filter (filters for files displayed in the dialog box; for each filter, its de-

scription is first indicated and then, after the vertical bar |, the filter itself indi-

cated as a list of file masks separated by semicolons; the symbol | also sepa-

rates filters from each other);

 InitialDirectory (the initial directory displayed when the dialog box is

opened).

121

2. The name of the current file is saved in the saveFileDialog1.FileName

property. The GetFileName method of the Path class extracts the name and ex-

tension from the full file name (the drive and path are discarded).

3. To write data to a text file, we use the WriteAllText method of the File class

from the System.IO namespace. When storing text, it takes into account all end-

of-line markers. The first parameter specifies the file name, the second parame-

ter specifies the saved text. The WriteAllText method can have a third, optional

parameter that specifies the encoding in which the text is stored in the file. If

this parameter is not specified, then UTF-8 encoding is used.

4. To automatically handle errors related to an attempt to overwrite an ex-

isting file and an attempt to specify a nonexistent directory, the OverwritePrompt
and CheckPathExists properties of the saveFileDialog1 control must be set to

True (this is their default value).

5. Despite the error control provided by the dialog box, when saving a file

(as well as opening it, which will be implemented in the next section), many

various error situations may occur. For their handling, it is strongly recom-

mended that you use the try–catch statement (see Chapter 3). In this and subse-

quent projects, we do not use the try–catch statement just because we do not

want to increase the size of the program code.

Disadvantage. When the file is subsequently saved by the Save As com-

mand, the full path to this file is displayed in the dialog box, which complicates

its editing. Note that in standard programs, dialog boxes never display full file-

names.

Correction. Add the following statement to the beginning of the

saveAs1_Click method:

saveFileDialog1.FileName =

 Path.GetFileName(saveFileDialog1.FileName);

Result. Now the dialog box displays only the name and extension of the

previously saved file.

Error. After the correction was made, the program does not work correctly

if the Save file dialog was called and the user closed it without selecting the file.

In this situation, the short file name (without the file path) is saved in the

saveFileDialog1.FileName property, and therefore, when the Save command is

subsequently executed (in which the dialog box is not displayed), the file is

saved not in its original directory, but in the current directory of application.

Correction. Modify the saveAs1_Click method as follows:
private void saveAs1_Click(object sender, EventArgs e)

{

 string oldPath = saveFileDialog1.FileName;

 saveFileDialog1.FileName =

 Path.GetFileName(saveFileDialog1.FileName);

 saveFileDialog1.FileName = Path.GetFileName(oldPath);

122

 if (saveFileDialog1.ShowDialog() == DialogResult.OK)

 {

 string path = saveFileDialog1.FileName;

 SaveToFile(path);

 Text = "Text Editor - " + Path.GetFileName(path);

 }

 else

 saveFileDialog1.FileName = oldPath;

}

Result. Now, the above error does not occur because when exiting the

saveAs1_Click method, the saveFileDialog1.FileName property always contains the

full name of the current file.

12.3. Clearing the editing area and opening an existing file

Add a non-visual control of OpenFileDialog type (named openFileDialog1) to

Form1; this control will be placed in the non-visual control area below the form

image). Set the properties of the added control:

Properties
openFileDialog1: DefaultExt = txt, FileName = empty string,

 Title = Open file, Filter = Text files|*.txt

Modify the last statement in the constructor of the Form1 class as follows:

openFileDialog1.InitialDirectory =

 saveFileDialog1.InitialDirectory =

 Directory.GetCurrentDirectory();

Define event handlers for the Click event for the new1 and open1 menu

items:

new1.Click and open1.Click handlers
private void new1_Click(object sender, EventArgs e)

{

 textBox1.Clear();

 Text = "Text Editor";

 saveFileDialog1.FileName = "";

}

private void open1_Click(object sender, EventArgs e)

{

 if (openFileDialog1.ShowDialog() == DialogResult.OK)

 {

 string path = openFileDialog1.FileName;

 textBox1.Text = File.ReadAllText(path);

 Text = "Text Editor - " + Path.GetFileName(path);

123

 saveFileDialog1.FileName = path;

 openFileDialog1.FileName = "";

 }

}

Result. When the New command is executed, the editing area is cleared;

when the Open... command is executed, the Open file dialog box appears allow-

ing you to select a file to load into the editor. The working directory of the ap-

plication is set as the starting directory for the Open file dialog box. When you

try to open a non-existent file, you receive a warning message, but the dialog

box does not close and you can correct the error immediately.

Remark. If the length of a text line from the loaded file excess the width of

the editing area, this line is automatically wrapped to the next screen line (the

wrapping is performed after one of the space characters).

Comments
1. In the new1_Click method, the saveFileDialog1.FileName property is

cleared. This indicates that the new document has not yet been saved to the file.

Clearing the openFileDialog1.FileName property in the open1_Click method pre-

vents the name of an already loaded file from being displayed in the File open

dialog box the next time this dialog box is called.

2. To read data from a text file, the ReadAllText method of the File class is

used, which reads the entire contents of the specified file into a string. The re-

sulting string includes end-of-line markers, which allows the read text to be

correctly split into separate lines when displayed in the textBox1 control.

When reading data, as well as writing it (see the previous section), our pro-

gram uses the default UTF-8 encoding.

3. For automatic handling of an error related to an attempt to read a non-

existent file, the CheckFileExists property of the openFileDialog1 control must be

True (this is its default value).

4. Setting the Title property for the SaveFileDialog and OpenFileDialog con-

trols is optional. If this property is not set (that is, it is empty), then the titles of

the dialog boxes are defined by the Windows operating system.

5. The WordWrap property of the TextBox control is responsible for the au-

tomatic wrap of long lines. Wrapping is performed if this property is True (the

default value). If you turn off automatic wrapping by setting the WordWrap

property to False, the trailing portion of long lines may not appear in the edit-

ing area. In this situation, a horizontal scroll bar may be useful; this scroll bar

can be added to a TextBox by setting its ScrollBars property to Horizontal. For

any value of the WordWrap property, it is also useful to add a vertical scroll bar

to the TextBox control (to add only a vertical bar, the ScrollBars property should

be set to Vertical; to add both scroll bars, it should be set to Both). The only

inconvenience of the vertical bar for the TextBox control is that it is always dis-

124

played on the screen (even if the loaded text does not exceed the visible editing

area).

12.4. Request to save changes

Add the following statement to the SaveToFile method of the Form1 class:

textBox1.Modified = false;

Add a new TextSaved method to the Form1 class:

private bool TextSaved()

{

 if (textBox1.Modified)

 switch (MessageBox.Show("Save changes in the document?",

 "Confirmation", MessageBoxButtons.YesNoCancel,

 MessageBoxIcon.Question))

 {

 case DialogResult.Yes:

 save1_Click(this, null);

 return !textBox1.Modified;

 case DialogResult.Cancel:

 return false;

 }

 return true;

}

Modify the new1_Click method as follows:
private void new1_Click(object sender, EventArgs e)

{

 if (TextSaved())

 {

 textBox1.Clear();

 Text = "Text Editor";

 saveFileDialog1.FileName = "";

 }

}

Add a new statement at the beginning of the open1_Click method:

if (TextSaved())

In addition, define an event handler for the FormClosing event for Form1:

Form1.FormClosing handler
private void Form1_FormClosing(object sender,

 FormClosingEventArgs e)

{

 e.Cancel = !TextSaved();

}

125

Result. If changes have been made to the current text, an attempt to clear

the editor window with the New command, to open a new file with the Open

command, or to exit the program leads to a prompt asking whether to save the

changes. When you click the Yes button, the current text is saved under the pre-

vious name (if it has never been saved, its name is requested in the Save file dia-

log box). Changes are not saved when you click the No button. When the Can-

cel button is clicked, the selected action (New, Open, or exiting the program) is

canceled and the user can continue editing the current text.

Comments
1. The TextSaved method uses the Modified property of the textBox1 control,

which is set to true if the text has been modified by the user. Note that any pro-

grammatic changes to the Text property of the textBox1 control set its Modified

property to false. Saving text to a file does not change the Modified property, so

a statement has been added to the SaveToFile method to set the Modified property

to false.

2. The TextSaved function returns true if the current text was saved to disk

or the user explicitly refused to save by clicking the No button. If the Cancel

button is clicked, then the function returns false (this means that the user wants

to go back to editing the current text). Pay attention to the statement
return !textBox1.Modified;

This statement ensures the correct handling of the following situation: the

user has not previously saved the text in the file; when prompted to save the

text, the user selected Yes, but exited the appeared Save file dialog box by

clicking Cancel. In this case, the TextSaved function will return false, which is

correct because it corresponds the Cancel option that the user finally chose.

126

13. Advanced menu options, color and font setting:
TEXTEDIT2 project

The TEXTEDIT2 project continues a series of projects related to the devel-

opment of a fully functional text editor. This project describes how to create ad-

vanced menu commands (checkboxes and radio buttons) and menu groups of the

third level. The implementation of commands for setting various font character-

istics and text alignment in the editor is considered; we discuss the correspond-

ing properties of the Font and TextBox classes. Also we consider the ColorDialog

and FontDialog non-visual controls that create standard dialog boxes for color and

font setting.

13.1. Setting the font style (menu items as checkboxes)

The previously developed TEXTEDIT1 project (see Chapter 12) should be

used as a template for the TEXTEDIT2 project. Copy the TEXTEDIT1 project

to the new TEXTEDIT2 directory and follow the steps required to rename the

project (see Section 1.1).

By following steps similar to those used to create a File menu item and its

associated second-level menu items (see Section 12.1), create a new first-level

menu item with the text F&ormat in the menuStrip1 control and use the Proper-

ties window to change the name of this item (that is, its Name property) to for-
mat1. In the second-level menu associated with Format, create three items with

text &Bold, &Italic, &Underline and name bold1, italic1, underline1, respective-

ly. Set the properties of the added menu items (take attention to the Font proper-

ty, for which you need to change one of its subproperties: Bold, Italic, or Under-
line):

Properties
Bold (the Format group): Name = bold1, ShortcutKeys = Ctrl+B,

 Font.Bold = True

Italic (the Format group): Name = italic1, ShortcutKeys = Ctrl+I,

 Font.Italic = True

Underline (the Format group): Name = underline1,

 ShortcutKeys = Ctrl+U, Font.Underline = True

The resulting menu is shown in Fig. 13.1.

127

Fig. 13.1. Form1 view at the initial stage of development

Define the Click event handler for the bold1 menu item and then connect the

created handler to the italic1 and underline1 menu item Click events (connecting

existing handlers to menu item events is the same as connecting to events of

usual controls – see Section 6.1):

bold1.Click handler
private void bold1_Click(object sender, EventArgs e)

{

 ToolStripMenuItem mi = sender as ToolStripMenuItem;

 mi.Checked = !mi.Checked;

 FontStyle fs = textBox1.Font.Style;

 fs = mi.Checked ? (fs | mi.Font.Style) : (fs & ~mi.Font.Style);

 Font f = textBox1.Font;

 textBox1.Font = new Font(f, fs);

 f.Dispose();

}

Result. When calling the menu items added to the menu, the corresponding

font style of characters in the editor is set as follows: bold for the Bold com-

mand, italic for the Italic command, underlined for the Underline command.

When the Format menu is called, checkmarks are displayed near the menu

items with set styles as for the checkboxes. Indeed, each menu item related with

a font style works as a checkbox: its first call sets the required font style and its

second call cancels this font style. Note that the names of these menu items are

displayed in the menu in the font style that they configure (for example, the

name of the Bold command is displayed in bold style).

Comments
1. The menu items have a CheckOnClick property that allows, when a menu

item is called, to automatically switch its state from enabled to disabled, and

vice versa. For such a behavior, this property must be set to True. By default,

128

the CheckOnClick property is False; in this case, when the menu item is called,

its state does not change and additional actions must be taken to change it. For

example, in the bold1_Click method, the statement mi.Checked = !mi.Checked per-

forms the required actions. We use explicit changing the state of the menu item

because it will simplify the binding of formatting commands to shortcut but-

tons (see Section 15.2).

2. In order to provide the execution of all three commands using one han-

dler, we used the fact that the font style of the menu item text corresponds to

the style that must be added to or removed from the set of font styles of the

textBox1 control. To add a required style (that is, an element of the FontStyle

enumeration) to a set of styles, we use the operator | (bitwise OR), to remove

the style, we use the operator & (bitwise AND) and the operator ~ (bitwise

NOT).

3. An additional problem is that the properties of an existing font cannot be

changed. Therefore, to change the font style, we have to create a new font with

the specified style. In order for all other font properties to remain unchanged, it

is convenient to use the Font class constructor specifically designed to change

the font style. This constructor has two parameters (f, s): its first parameter is

the existing font f, the second parameter is the required style s. The generated

font has all the properties of the font f, with the exception of the style, which is

taken from the second parameter of the constructor. Recall that the old font, af-

ter creating a new one, should be destroyed by calling its Dispose method.

13.2. Setting text alignment (menu items as radio buttons)

Add new items to the second-level menu associated with the Format item

(see Section 13.1). Firstly add an item with the text - (dash); this item will be

converted to a horizontal separator. Then add three menu items with the text

&Left justify, C&enter, and &Right justify and set the properties for those

items as follows:

Properties
Left justify (the Format group): Name = leftJustify1,

 ShortcutKeys = Ctrl+L, CheckState = Indeterminate

Center (the Format group): Name = center1, ShortcutKeys = Ctrl+E

Right justify (the Format group): Name = rightJustify1,

 ShortcutKeys = Ctrl+R

At the beginning of the Form1 class declaration, add a declaration of the

new field:

private ToolStripMenuItem alignItem;

Add new statements to the constructor of the Form1 class:

alignItem = leftJustify1;

leftJustify1.Tag = HorizontalAlignment.Left;

center1.Tag = HorizontalAlignment.Center;

129

rightJustify1.Tag = HorizontalAlignment.Right;

Define the Click event handler for the leftJustify1 menu item and then connect

the created handler to the Click event of the center1 and rightJustify1 menu items.

leftJustify1.Click handler
private void leftJustify1_Click(object sender, EventArgs e)

{

 ToolStripMenuItem mi = sender as ToolStripMenuItem;

 if (mi.Checked) return;

 alignItem.Checked = false;

 alignItem = mi;

 mi.CheckState = CheckState.Indeterminate;

 textBox1.TextAlign = (HorizontalAlignment)mi.Tag;

}

Result. When calling the menu items added to the menu, the text alignment

in the editor is set as follows: left alignment for Left justify, centering for Cen-

ter, right alignment for Right justify. When the Format menu is called,

a mark is displayed near the command with the current alignment (as for the

selected radio button). Thus, the added menu items behave like a group of radio

buttons.

Comments

1. To set a mark near a menu item, you should set its CheckState property

to Indeterminate, but this action will not reset the mark near the previously

marked menu item. The alignItem field, which was added to the Form1 class,

stores the currently marked menu item. If another alignment option is selected,

the mark is removed from the previously marked item, the new item is marked,

and this item is stored in the alignItem field (see the leftJustify1_Click method).

Note that the Checked and CheckState properties are related as follows: Checked

is False when CheckState has the Unchecked value; for other CheckState val-

ues, the Checked property is True.

2. In order to provide the execution of all three commands using one han-

dler, we used the Tag property. For each menu item, this property contains the

alignment value (as some member of the HorizontalAlignment enumeration) that

corresponds to that item. Since only string values can be assigned to the Tag

property using the Properties window, the required assignments are performed

in the form’s constructor. In the leftJustify1_Click event handler, the Tag property

of the executed command is assigned to the TextAlign property of the textBox1

control. Note that the Tag properties of the leftJustify1, rightJustify1, and center1

menu items could be initialized by the numbers 0, 1, and 2, since the corre-

sponding elements of the HorizontalAlignment enumeration have such numeric

values, but in this case the resulting code would be less descriptive:
leftJustify1.Tag = 0;

130

center1.Tag = 2;

rightJustify1.Tag = 1;

13.3. Setting the color of symbols and background color (third-
level menu commands and the Color dialog box)

Add a non-visual control of ColorDialog type (named colorDialog1) to Form1

(this control will be placed in the non-visual control area below the form image).

Add new items to the second-level menu associated with the Format item

(see Sections 13.1 and 13.2): one more splitter and a menu item with the

&Colors text. Then go to the third-level menu template associated with the

Colors menu item and add two menu items with the text &Font color... and

&Background color... to it. Set the Name property of the added menu items:

Properties
Colors (the Format group): Name = colors1

Font color… (the Colors group): Name = fontColor1

Background color… (the Colors group): Name = backgroundColor1

Define the Click event handlers for the fontColor1 and backgroundColor1 menu

items:

fontColor1.Click and backgroundColor1.Click handlers
private void fontColor1_Click(object sender, EventArgs e)

{

 colorDialog1.Color = textBox1.ForeColor;

 if (colorDialog1.ShowDialog() == DialogResult.OK)

 textBox1.ForeColor = colorDialog1.Color;

}

private void backgroundColor1_Click(object sender, EventArgs e)

{

 colorDialog1.Color = textBox1.BackColor;

 if (colorDialog1.ShowDialog() == DialogResult.OK)

 textBox1.BackColor = colorDialog1.Color;

}

The resulting menu of the Format group is shown in Fig. 13.2 (the last

item of this menu named Font... will be added in the next section).

Result. When the command from the Colors menu group is executed, the

Color dialog box is called, which allows you to set the color of symbols (the

Font color... command) or the background color (the Background color...

command). When the dialog box is displayed, the current color is selected (out-

lined by frame). To set a new color, select it and click OK.

Remark. If some dialog box appears on the screen during execution of

a menu command, it is recommended to indicate an ellipsis (…) at the end of the

name of such a command (earlier in our program, ellipsis was used in the names

of the Open... and Save As... commands). The presence of an ellipsis in the

131

command name means, in particular, that this command can be canceled after its

call if the associated dialog box is closed using the Cancel button or the Esc

key.

Figure: 13.2. The final view of Form1

13.4. Setting font properties using the Font dialog box

Add a non-visual control of FontDialog type (named fontDialog1) to Form1

(this control will be placed in the area of non-visual controls below the form im-

age).

Add the menu item with the text &Font… to the second-level menu associ-

ated with the Format item (see Fig. 13.2). Set the Name property of the added

menu item to font1 and define the Click event handler for that menu item:

font1.Click handler
private void font1_Click(object sender, EventArgs e)

{

 fontDialog1.Font = textBox1.Font;

 if (fontDialog1.ShowDialog() == DialogResult.OK)

 {

 Font f = textBox1.Font;

 textBox1.Font = fontDialog1.Font;

 f.Dispose();

 bold1.Checked = fontDialog1.Font.Bold;

 italic1.Checked = fontDialog1.Font.Italic;

 underline1.Checked = fontDialog1.Font.Underline;

 }

}

Result. When the Font... command is executed, the Font dialog box is

called, allowing you to change the font in the editor. When the dialog box is dis-

played, it indicates the current font settings. If you change the font style, the

132

checkboxes for the Bold, Italic, and Underline menu items are additionally ad-

justed. See also Comment 1.

Error. If you open the Font dialog box and, without changing any font

properties, close the window by clicking OK or pressing the Enter key, then

a runtime error will occur the next time you open the Font window. This error

occurs “inside” the ShowDialog method and is related to the interaction of the

Font properties of the fontDialog1 and textBox1 objects, in particular, with dispos-

ing the old font instance for the textBox1 control. You can come to such a con-

clusion by noticing that if you comment out the f.Dispose() statement, then the

specified error does not occur.

So, to correct the error, you may remove call of the Dispose method. But

this is a bad solution, as it does not free up system resources used by an old font

instance. Of course, in the absence of other alternatives, this solution may be

used, but we can choose the best way.

Correction. Add one more conditional statement to the font1_Click method

as follows:
private void font1_Click(object sender, EventArgs e)

{

 fontDialog1.Font = textBox1.Font;

 if (fontDialog1.ShowDialog() == DialogResult.OK)

 if (!textBox1.Font.Equals(fontDialog1.Font))

 {

 Font f = textBox1.Font;

 textBox1.Font = fontDialog1.Font;

 f.Dispose();

 bold1.Checked = fontDialog1.Font.Bold;

 italic1.Checked = fontDialog1.Font.Italic;

 underline1.Checked = fontDialog1.Font.Underline;

 }

}

Result. Now, in the situation described above, no runtime error occurs (see

Comment 2).

Remark. It should be admitted that the used way of setting the font in some

(extremely rare) situations will still lead to a runtime error. The fact is that

among the standard Windows fonts there are fonts that do not implement all font

styles. For example, the Monotype Corsiva font has no regular (non-italic) style

defined. You cannot set invalid styles for such fonts using the Font window, but

you can try to do this later using the font style settings from the Format menu.

Trying to do this will result in a runtime error. Since there are very few such

fonts available, we will not check this special situation in our project. The reader

can implement such processing himself by enclosing all the bold1_Click method

statements, except for the first one, in a try block, and by placing the error mes-

133

sage The specified style combination is not available for the current font in

the catсh section of this try block, as well as the statement for restoring the pre-

vious state of the selected menu item: mi.Checked = !mi.Checked. Note also that

using the FontFamily class and its IsStyleAvailable method, you can determine

which styles are available for a given font.

Comments
1. In order to determine in the font1_Click method whether the required style

is set for the selected font, we used the following Boolean properties of the Font
class: Bold, Italic, Underline. Recall that these properties (like all other properties

of the Font class) are read-only.

2. The conditional statement added in the new version of the font1_Click

method allows to bypass all actions to change the font in the case when the ini-

tial font was not changed in the dialog box. The Equals method allows to check

that two objects are equal, that is, that they describe the same fonts. Note that

the == operator cannot be used in this situation, since for many classes (includ-

ing the Font class) the == operator returns true only if both objects being com-

pared are identical, that is, they are references to the same object allocated in

memory. If you try to use the == operator instead of the Equals method in our

case, you will always obtain the false result; in other words, after the

ShowDialog method is executed, the Font properties of the fontDialog1 and

textBox1 objects will always refer to different objects. Thus, these properties

will never be identical, but they can be equal.

134

14. Editing commands, context menus: TEXTEDIT3
project

The TEXTEDIT3 project continues a series of projects related to the devel-

opment of a fully functional text editor. This project implements standard text

editing commands that are included in both the main menu (the MenuStrip con-

trol) and the editor’s context menu (the ContextMenuStrip control). Also we dis-

cuss issues related to the use of the Windows clipboard in .NET applications

(the Clipboard class).

14.1. Editing commands

The previously developed TEXTEDIT2 project (see Chapter 13) should be

used as a template for the TEXTEDIT3 project.

Go to the menu designer (see Section 12.1) and insert a new first-level

menu item before the already existing Format item. To do this, select the For-

mat item, call its context menu (by right-clicking), and select the Insert |

MenuItem command. The new menu item will have a name toolStripMenuItemN

(where N is some number) and a title corresponding to this name. Change the ti-

tle of the new menu item to &Edit (this can be done in the menu designer itself)

and replace its name, that is, the Name property, with edit1 using the Properties

window.

In the second-level menu associated with the new Edit item, create menu

items with the following text: &Undo, a dash - (this item will be converted to a

separator), Cu&t, &Copy, &Paste, &Delete, another dash -, &Select All. Set

the properties of the added menu items; as a result, the Edit menu will take the

form shown in Fig. 14.1.

Properties
Undo (the Edit group): Name = undo1, ShortcutKeys = Ctrl+Z

Cut (the Edit group): Name = cut1, ShortcutKeys = Ctrl+X

Copy (the Edit group): Name = copy1, ShortcutKeys = Ctrl+C

Paste (the Edit group): Name = paste1, ShortcutKeys = Ctrl+V

Delete (the Edit group): Name = delete1

Select All (the Edit group): Name = selectAll1,

 ShortcutKeys = Ctrl+A

135

Fig. 14.1. View of Form1 with the expanded Edit menu

Define click event handlers for the Edit menu items:

undo1.Click, cut1.Click, copy1.Click, paste1.Click, delete1.Click,
selectAll1.Click handlers

private void undo1_Click(object sender, EventArgs e)

{

 textBox1.Undo();

}

private void cut1_Click(object sender, EventArgs e)

{

 textBox1.Cut();

}

private void copy1_Click(object sender, EventArgs e)

{

 textBox1.Copy();

}

private void paste1_Click(object sender, EventArgs e)

{

 textBox1.Paste();

}

private void delete1_Click(object sender, EventArgs e)

{

 textBox1.SelectedText = "";

}

private void selectAll1_Click(object sender, EventArgs e)

{

 textBox1.SelectAll();

}

Result. The menu contains standard editing commands: the Undo com-

mand to undo the last editor action, the Cut and Copy command to cut and copy

the selected fragment to the clipboard, the Paste command to paste a fragment

136

from the clipboard, the Delete command to delete the selected fragment, the Se-

lect All command to select all the text in the editor.

Comments
1. The Delete key is the default hot key for the deleting a selected text (that

is, it is handled in any TextBox control). In the case when the text does not con-

tain a selection, a certain action is also provided for the Delete key (deleting

the character to the right of the caret), so you should not specify it in the de-
lete1.ShortcutKeys property. The hot keys Ctrl+Z, Ctrl+X, Ctrl+C, Ctrl+V are

also handled as required in any TextBox control. By specifying them in the cor-

responding ShortcutKeys properties, we only ensured that these hot keys are

displayed in the menu. All of the above commands are also available from the

standard context menu of the TextBox control (the context menu is invoked by

right-clicking on the control).

2. It should be noted that those of the implemented editing commands that

change the content of the textBox1 control always set its Modified property to

true, whereas programmatical changing the Text property set the Modified prop-

erty to false.

14.2. Special visualization of unavailable editing commands.
Working with the clipboard

Define the Click event handler for the edit1 menu item:

edit1.Click handler
private void edit1_Click(object sender, EventArgs e)

{

 undo1.Enabled = textBox1.CanUndo;

 cut1.Enabled = copy1.Enabled = delete1.Enabled =

 textBox1.SelectionLength > 0;

 paste1.Enabled =

 Clipboard.GetDataObject().GetDataPresent(typeof(string));

 selectAll1.Enabled = textBox1.Text != "";

}

Result. When the submenu of the Edit menu group is called, the unavaila-

ble menu items are grayed out. The Undo item is available if an action was pre-

viously performed that can be undone. The Cut, Copy, Delete items are availa-

ble if the text contains a selection. The Paste item is available if the clipboard

contains data in text format (see also the comment). The Select All item is avail-

able if the editor contains non-empty text.

Disadvantage. The edit1_Click handler is executed after expanding the

submenu of the Edit command, so the user can see how the appearance of inac-

cessible menu items changes.

Correction. In the Events tab of the Properties window for the edit1 con-

trol, do the following:

137

 remove the text edit1_Click from the Click text box;

 add the text edit1_Click to the DropDownOpening text box (the easi-

est way to do this is to use the drop-down list for this text box).

Result. Now the actions specified in the handler are performed after click-

ing on the Edit menu item, but before expanding the submenu, since the

DropDownOpening event occurs at this moment.

Comment
To check for the presence of a text fragment in the clipboard, we used the

GetDataObject static method of the Clipboard class. This method returns an ob-

ject of IDataObject type. Using methods of this object, we can check for the

presence of data of the type of interest in the Windows clipboard (using the

GetDataPresent Boolean function) and also get this data (using the GetData

function, which returns a value of object type). Both functions have one param-

eter of Type type, which determines the required data type (in our case, string).

To check that the clipboard contains a bitmap or vector image, call the

GetDataPresent method with the typeof(Bitmap) or typeof(Metafile) parameter, re-

spectively. Note that the clipboard can store any .NET object (for example,

a button), but only a .NET application which places this .NET object on the

clipboard can get such an object (at the same time, strings and images that have

been placed on the clipboard are available for all applications).

The clipboard can simultaneously store data of different formats, so the fact

that the GetDataPresent(typeof(string)) method returns true does not mean that the

GetDataPresent(typeof(Bitmap)) method will necessarily return false.

The SetDataObject static method of the Clipboard class is used to place a data

item on the clipboard. As the first parameter of this method, you must specify

an object containing the required data item (for example, a string). A copy of

the item is placed on the clipboard; this action removes old data of the same

type from the clipboard. The SetDataObject method can have a second parame-

ter of bool type. If this parameter is true, the data item will be contained in the

clipboard even after the termination of the application that placed it on the

clipboard. It is clear that this should only be done for data that can be recog-

nized by all applications (for example, strings or images). If the second param-

eter is false or absent, then the data item is automatically removed from the

clipboard when the application terminates.

It is also possible to place several representations of the same data item on

the clipboard (for example, a program that places text in RTF format on the

clipboard can simultaneously place a non-formatted text). The application can

determine all available formats of data placed on the clipboard and get data of

the required format. For these purposes, the GetDataPresent and GetData func-

tions are equipped with overloaded versions that take as a parameter not a type,

but a text string describing the required format (for example, "Rich Text For-

138

mat"). All possible formats are represented in the DataFormat class as static

read-only string fields.

14.3. Creating a context menu

Add a control of ContextMenuStrip type (named contextMenuStrip1) to Form1

(this control will be placed in the area of non-visual controls below the form im-

age). This control allows using context menus in the application. Bind the

contextMenuStrip1 control to the edit area (that is, the textBox1 control) by setting

the contextMenuStrip property of the textBox1 control to contextMenuStrip1.

To define the items of the context menu, as in the case of a usual menu, the

menu designer is used. However, unlike a usual menu, the context menu design-

er is displayed on the form only when the control associated with the context

menu is selected (in our case, this is the contextMenuStrip1 control). You cannot

create a horizontal first-level menu for a context menu; it is also not recom-

mended to create nested drop-down menus in the context menu and to associate

shortcut keys with the commands of the context menu.

Proceeding in the same way as in Section 12.1 when creating the File menu

item and its associated second-level menu items, create menu items in the

contextMenuStrip1 context menu. The text of these menu items should be as fol-

lows: Cu&t, &Copy, &Paste, a dash - (which will be converted to a separator),

&Font... (see Fig.14.2).

Fig. 14.2. Form1 view with the context menu constructor

Set the properties of the added menu items (note that when defining the

names for the context menu items, we do not use the suffix 1, as for the main

menu items, but the suffix 2):

Properties
Cut (the contextMenuStrip1 menu): Name = cut2,

 Click = cut1_Click

Copy (the contextMenuStrip1 menu): Name = copy2,

 Click = copy1_Click

Paste (the contextMenuStrip1 menu): Name = paste2,

139

 Click = paste1_Click

Font (the contextMenuStrip1 menu): Name = font2,

 Click = font1_Click

In the list of properties, we also indicated existing handlers which should

be connected to the Click event for each of the context menu items.

In addition, define an Opening event handler for the contextMenuStrip1 con-

trol:

contextMenuStrip1.Opening handler
private void contextMenuStrip1_Opening(object sender,

 CancelEventArgs e)

{

 cut2.Enabled = copy2.Enabled = textBox1.SelectionLength > 0;

 paste2.Enabled =

 Clipboard.GetDataObject().GetDataPresent(typeof(string));

}

Result. When you right-click in the editor area of the window, the context

menu defined in the contextMenuStrip1 control is displayed instead of the stand-

ard context menu of the TextBox control. The context menu items that are cur-

rently unavailable are grayed out.

140

15. Toolbar: TEXTEDIT4 project

The TEXTEDIT4 project continues a series of projects related to the devel-

opment of a fully functional text editor. This project creates and configures the

application toolbar (the ToolStrip control) and its elements: usual shortcut buttons

and shortcut buttons that behave as checkboxes and radio buttons. We describe

the steps required to add images to an application resource file and to associate

the added images with shortcut buttons and menu items.

15.1. Creation a toolbar and shortcut buttons. Adding images
to menu items

The previously developed TEXTEDIT3 project (see Chapter 14) should be

used as a template for the TEXTEDIT4 project.

Place a toolbar (that is, a control of ToolStrip type) on Form1; this control

will be named toolStrip1. The toolbar will automatically dock to the top border of

the form and will be positioned below the main menu menuStrip1. However, it

will hide the top of the textBox1 control. To place all three controls without over-

lapping, we need to arrange them in the correct z-order (see Comment 4 in Sec-

tion 9.1). In our case, the easiest way is to execute the Bring to Front command

for the textBox1 control. This command (as well as the Send To Back command)

can be executed by a corresponding button on the Layout panel and also by

a context menu command that can be called for any visual control placed on the

form.

When placed on a form, a toolbar contains a drop-down list of all types of

controls that can be placed on that toolbar. In our program, only usual shortcut

buttons (also called speed buttons) and separators will be used. When the But-

ton option is selected, a button control of ToolStripButton type is placed on the

toolbar and is immediately named (in this case, as toolStripButton1). Since the

shortcut buttons will be associated with the corresponding items of the main

menu, we will replace the default button name with the name of the correspond-

ing menu item and add the digit 0 to it, for example, new10.

Controls placed on the toolbar automatically line up with no spaces be-

tween them. To add a standard separator space, select the Separator option

from the drop-down list of available toolbar controls. This action adds a control

of ToolStripSeparator type to the toolbar and immediately assigns it an appropri-

ate name (for example, toolStripSeparator1). Since there is no need to refer to the

separators in the future, we will not change their names. Note that the relative

position of buttons and separators on the toolbar can be changed by dragging the

required control with the mouse to a new location.

141

Add the following controls to the toolStrip1 toolbar (in order from left to

right; the names of the button controls, that is, their Name properties, must be

specified in the Properties window): the new10 button, the open10 button, the

save10 button, a separator, the cut10 button, the copy10 button, the paste10 but-

ton.

By default, the Text property of the shortcut button coincides with its name

(that is, the Name property), however, it is not displayed on the button, since it is

assumed that the button will not contain text, but an image (the DisplayStyle

property is responsible for the appearance of the button; its default value is Im-

age). All buttons added to the toolbar are associated with a standard image. Of

course, it needs to be replaced with an image corresponding to the action that

each button should perform.

Before assigning images to buttons, add all the necessary images to the re-

source file of the project being developed. Let us describe the steps for adding

images, assuming that the Visual Studio 2012 Image Library is available to us

(see Section 10.7).

Select the first button added to the panel (new10) and in the Properties

window go to the Image property. Click the ellipsis button near this property,

in the Select Resource window that appears, select the Project resource file ra-

dio button and click the Import... button. In the Open window that appears, go

to the x--archive--x\Actions - VS2010\24bitcolor bitmaps subdirectory of the

Visual Studio 2012 Image Library collection, select the Document.bmp file

and click Open or press Enter. As a result, the name of the added resource will

appear in the Select Resource window: Document. Without closing the Select

Resource windows, add the following files from the same subdirectory to the

resource file: OpenFolder.bmp, Save.bmp, Cut.bmp, Copy.bmp, Paste.bmp.

After adding all the images, select Document from their list and click OK.

The selected image will be associated with the new10 shortcut button. Follow the

same steps to add images to all shortcut buttons. In the list of properties below,

we specify the name of the image from the resource list, which should be set to

the Image property for each button. In addition, this property list shows which

existing handler should be connected to the Click property of each button. Anoth-

er property that should be configured for each button is ToolTipText; this property

is responsible for displaying a tooltip when the mouse is hovering over the but-

ton.

Properties
new10: Image = Document, ToolTipText = New, Click = new1_Click

open10: Image = OpenFolder, ToolTipText = Open,

 Click = open1_Click

save10: Image = Save, ToolTipText = Save, Click = save1_Click

cut10: Image = Cut, ToolTipText = Cut, Click = cut1_Click

copy10: Image = Copy, ToolTipText = Copy, Click = copy1_Click

142

paste10: Image = Paste, ToolTipText = Paste, Click = paste1_Click

Make sure that the ImageTransparentColor property is set to Magenta for all

shortcut buttons (this color is used in all images for the fragments that should be

transparent). The resulting toolbar is shown in Fig. 15.1.

Fig. 15.1. The upper part of Form1 at the first stage of development

Once images are included in the project resource file, they can be used not

only for shortcut buttons, but also for main menu items. To do this, simply con-

nect the corresponding image to the Image property of the menu item (in the

same way as when connecting an image to a shortcut button). For each menu

item, we indicate the name of the image that needs to be associated with it:

new1 – Document, open1 – OpenFolder, save1 – Save, cut1 – Cut, copy1 –

Copy, paste1 – Paste. All of these menu items must have the ImageTransparent-
Color property set to Magenta.

Result. To execute frequently used commands, it is now enough to click on

the corresponding shortcut button. To determine which command the shortcut

button is associated with, you need to move the mouse cursor to it: after 1–2 se-

conds, a yellow tab with the name of the corresponding command will appear

next to the button. Menu items that have shortcut buttons display the same im-

ages as their associated buttons.

Remark. The presence of images in menu commands allows the user to

quickly remember the shortcut button associated with each command.

Comment
You can also use the ImageList control to associate shortcut buttons with

images (see Section 10.7). To do this, just place this control on the form (the

control will be named imageList1), add the required images to the control, and set

the ImageList property of the toolStrip1 toolbar equal to imageList1. For the

shortcut buttons, it remains to set the ImageKey properties (similar to how it was

done for the usual button in Section 10.7). Unfortunately, the Properties win-

dow lacks all the properties of the ToolStrip and ToolStripButton controls associat-

ed with accessing the ImageList control. Therefore, when using this method of

binding images to shortcut buttons, you must programmatically set the required

properties in the form constructor; in addition, the required images will not ap-

pear on the buttons in design mode.

143

15.2. Using shortcut buttons that behave as checkboxes
and radio buttons

In this section, all buttons added to the toolbar will be provided with text

captions. These captions are specified in the Text property. To display a text cap-

tion on a button, the DisplayStyle property of the button must be set equal to Text.
Add new controls to the toolStrip1 toolbar (in order from left to right); the

names of the button controls, that is, their Name properties, should be specified

in the Properties window: separator, bold10 button, italic10 button, underline10

button, separator, leftJustify10 button, center10 button, rightJustify10 button. Set the

properties of the added controls. The resulting toolbar is shown in Fig. 21.2.

Properties
bold10: Text = B, DisplayStyle = Text, ToolTipText = Bold,

 Font.Bold = True

italic10: Text = I, DisplayStyle = Text, ToolTipText = Italic,

 Font.Italic = True

underline10: Text = U, DisplayStyle = Text,

 ToolTipText = Underline, Font.Underline = True

leftJustify10: Text = <, DisplayStyle = Text,

 ToolTipText = Left justify, Checked = True

center10: Text = =, DisplayStyle = Text, ToolTipText = Center

rightJustify10: Text = >, DisplayStyle = Text,

 ToolTipText = Right justify

Fig. 15.2. The final version of the upper part of Form1

Remark. Instead of text captions, the follows images from the Ac-

tions\bmp directory of the Visual Studio 2012 Image Library could be con-

nected to the new shortcut buttons: bold10 – Bold_11689_24.bmp, italic10 – Ital-

ic_11693_24.bmp, underline10 – Underline_11700_24.bmp, leftJustify10 –

LeftJustify_b11695_24.bmp, center10 – Centered_11691_24.bmp,

rightJustify10 – RightJustify_11699_24.bmp.

Add the GetButton method to the Form1 class:

private ToolStripButton GetButton(ToolStripMenuItem mi)

{

 return toolStrip1.Items[mi.Name + "0"] as ToolStripButton;

}

144

Define handlers for the Click event for the new shortcut buttons:

bold10.Click, italic10.Click, underline10.Click, leftJustify10.Click,
center10.Click, rightJustify10.Click handlers

private void bold10_Click(object sender, EventArgs e)

{

 bold1_Click(bold1, null);

}

private void italic10_Click(object sender, EventArgs e)

{

 bold1_Click(italic1, null);

}

private void underline10_Click(object sender, EventArgs e)

{

 bold1_Click(underline1, null);

}

private void leftJustify10_Click(object sender, EventArgs e)

{

 leftJustify1_Click(leftJustify1, null);

}

private void center10_Click(object sender, EventArgs e)

{

 leftJustify1_Click(center1, null);

}

private void rightJustify10_Click(object sender, EventArgs e)

{

 leftJustify1_Click(rightJustify1, null);

}

Modify the bold1_Click, leftJustify1_Click, and font1_Click methods:
private void bold1_Click(object sender, EventArgs e)

{

 ToolStripMenuItem mi = sender as ToolStripMenuItem;

 mi.Checked = !mi.Checked;

 FontStyle fs = textBox1.Font.Style;

 fs = mi.Checked ? (fs | mi.Font.Style) : (fs & ~mi.Font.Style);

 Font f = textBox1.Font;

 textBox1.Font = new Font(f, fs);

 f.Dispose();

 ToolStripButton sb = GetButton(mi);

 sb.Checked = !sb.Checked;

}

private void leftJustify1_Click(object sender, EventArgs e)

145

{

 ToolStripMenuItem mi = sender as ToolStripMenuItem;

 if (mi.Checked) return;

 GetButton(alignItem).Checked = alignItem.Checked = false;

 alignItem = mi;

 mi.CheckState = CheckState.Indeterminate;

 GetButton(mi).Checked = true;

 textBox1.TextAlign = (HorizontalAlignment)mi.Tag;

}

private void font1_Click(object sender, EventArgs e)

{

 fontDialog1.Font = textBox1.Font;

 if (fontDialog1.ShowDialog() == DialogResult.OK)

 if (!textBox1.Font.Equals(fontDialog1.Font))

 {

 Font f = textBox1.Font;

 textBox1.Font = fontDialog1.Font;

 f.Dispose();

 bold10.Checked = bold1.Checked = fontDialog1.Font.Bold;

 italic10.Checked =

 italic1.Checked = fontDialog1.Font.Italic;

 underline10.Checked =

 underline1.Checked = fontDialog1.Font.Underline;

 }

}

Result. To set the font style and text alignment, just click on the corre-

sponding shortcut button, which will become “pressed”. In what follows, we

will use the expressions “pressed state” and “released state” of a button, alt-

hough, when using the standard .NET button image style, the “pressed” button

simply has an extra border (see the leftJustify10 button image in Fig. 15.2).

The pressed state of the shortcut button means that the specified mode is

set. The font setting buttons bold10, italic10, underline10 act as checkboxes: each

button can be switched to the pressed or released state independently of the oth-

ers. The text alignment buttons leftJustify10, center10, rightJustify10 act like

a group of radio buttons: clicking on any of them will release the rest. It should

be noted that, when formatting commands are executed directly from the menu

or using shortcut keys, the state of the corresponding shortcut buttons is adjusted

appropriately.

Comments

1. The GetButton method added to the Form1 class allows to get the associ-

ated shortcut button for the menu item. This is possible due to using similar

146

names for menu items and associated shortcut buttons: to get a shortcut button,

it is enough to use the Items collection property of the toolStrip1 control and

specify the name of the required button as a key (this name is equal to the name

of the corresponding menu command, supplemented with the digit 0). The

GetButton method also allows you to check if any shortcut button is associated

with a given menu item: if there is no button associated with the item, the

method will return null (this additional feature is not used in our program, but it

can be useful when implementing interaction of menu items and shortcuts in

other applications).

2. In our program, the buttons “delegate” the execution of all actions (in-

cluding changing their own state) to the menu items. This ensures that the state

of the buttons is changed correctly when formatting commands are executed in

other ways (from the menu or using shortcut keys). To implement the behavior

of the leftJustify10, center10, rightJustify10 controls as a group of radio buttons,

the alignItem field is used, with the help of which the selection is removed from

the previously selected shortcut button of this group.

147

16. Status bar and hints: TEXTEDIT5 project

The TEXTEDIT5 project continues a series of projects related to the devel-

opment of a fully functional text editor. This project creates and configures the

status bar of the application (the StatusStrip control) and its label elements. We

describe the actions to check the state of the Caps Lock and Num Lock toggle

keys, hide and redisplay the toolbar and status bar, and display an expanded hint

for the selected menu command on the status bar. In addition, the ToolTip control

is described, which allows to associate a contextual hint with any visual control

of the application.

16.1. Using the status bar

The previously developed TEXTEDIT4 project (see Chapter 15) should be

used as a template for the TEXTEDIT5 project.

Add a status bar (that is, a control of StatusStrip type) to Form1; this control

will be named statusStrip1. Also add a non-visual control of Timer type, which

will be named timer1 and will be placed in the non-visual control area under the

form image. To prevent the bottom part of the textBox1 control from being over-

lapped by the added status bar, you should execute the Bring to Front com-

mand for the textBox1 control (see Section 15.1).

To add controls to the status bar, a drop-down list is intended, in which we

will use only the StatusLabel item (this item adds a label control of ToolStrip-
StatusLabel type to the status bar). Since the default names for the controls added

to the status bar are too long (for example, toolStripStatusLabel1), we will change

them choosing the names according to the purpose of each item in the status bar.

Add the label controls with the specified names to the statusStrip1 status bar

(the names of the label controls, that is, their Name properties, should be speci-

fied in the Properties window): cap1, num1, modified1, hint1. Set the properties of

the added label controls, as well as the timer1 control.

Properties
cap1: Text = CAP, AutoSize = False, BorderSides = All,

 BorderStyle = Sunken, Size.Width = 40

num1: Text = NUM, AutoSize = False, BorderSides = All,

 BorderStyle = Sunken, Size.Width = 40

modified1: Text = Modified, AutoSize = False, BorderSides = All,

 BorderStyle = Sunken, Size.Width = 80

hint1: Text = Ready, Margin.Left = 5

timer1: Interval = 200, Enabled = True

148

The Size.Width property is used to set the new label width, the Margin.Left
property of the hint1 label is used to increase the space between the Ready text

of this label and the border of the previous modified1 label). The resulting status

bar is shown in Fig. 16.1.

Fig. 16.1. The lower part of Form1

Define an event handler for the Tick event for timer1:
timer1.Tick handler
private void timer1_Tick(object sender, EventArgs e)

{

 cap1.Text = IsKeyLocked(Keys.CapsLock) ? "CAP" : "";

 num1.Text = IsKeyLocked(Keys.NumLock) ? "NUM" : "";

 modified1.Text = textBox1.Modified ? "Modified" : "";

}

Add a call to that handler to the constructor of the Form1 class:

timer1_Tick(this, null);

Result. The status bar displays the current state of the Caps Lock and Num

Lock keys. In addition, it shows whether the document has been changed since it

was last saved (if it has been changed, the string Modified is displayed).

Comments
1. To be able to determine the current state of the Caps Lock, Num Lock,

and Scroll Lock keys, a new static method IsKeyLocked of boolean type was

added to the Control class in version .NET 2.0. Only three members of the Keys

enumeration can be specified as a parameter of this method: Keys.CapsLock,

Keys.NumLock, and Keys.Scroll; an attempt to specify another member of the

Keys enumeration throws a NotSupportedException exception.

2. You can also use the ModifiedChanged event of the textBox1 control to

track changes to the Modified property.

3. Calling the Tick event handler in the form constructor provides adjusting

the status bar before displaying it on the screen.

16.2. Inaccessible shortcut buttons

Add new statements to the timer1_Tick method:

cut10.Enabled = copy10.Enabled = textBox1.SelectionLength > 0;

paste10.Enabled =

 Clipboard.GetDataObject().GetDataPresent(typeof(string));

save1.Enabled = save10.Enabled = textBox1.Modified;

Result. Now the state of the shortcut buttons associated with the clipboard

matches the state of the corresponding menu items (they are simultaneously

149

available or unavailable). In addition, the Save menu item and its associated

shortcut button are now available only after changes have been made to the text

being edited.

16.3. Hiding the toolbar and status bar

Proceeding in the same way as in Section 12.1 when creating a File menu

item and associated second-level menu items, add a first-level menu item with

the &View text to the menuStrip1 control and use the Properties window to

change the name of this item (that is, the Name property) to view1. In the second-

level menu associated with the View item, create items with the text &Toolbar

and &Status bar (Fig. 16.2).

Set the properties of the added menu items:

Properties
Toolbar (the View group): Name = toolBar1, Checked = True

Status bar (the View group): Name = statusBar1, Checked = True

Fig. 16.2. The upper part of Form1

Define Click event handlers for the toolBar1 and statusBar1 menu items:

toolbar1.Click and statusBar1.Click handlers
private void toolBar1_Click(object sender, EventArgs e)

{

 toolStrip1.Visible = toolBar1.Checked = !toolBar1.Checked;

}

private void statusBar1_Click(object sender, EventArgs e)

{

 statusStrip1.Visible = statusBar1.Checked =

 !statusBar1.Checked;

}

Result. Using the checkbox-style commands of the View menu, you can

hide and restore the toolbar and status bar.

16.4. Displaying hints on the status bar

Set the ToolTipText property for the menu items in the File group:

Properties
new1: ToolTipText = Create new document

open1: ToolTipText = Open existing document

150

save1: ToolTipText = Save current document

saveAs1: ToolTipText = Save document under new name

exit1: ToolTipText = Exit editor

Define event handlers for the MouseEnter and MouseLeave events for the

new1 menu item and then connect these handlers to the MouseEnter and

MouseLeave events of the remaining menu items in the File group. Also connect

the new1_MouseLeave handler to the MenuActivate event of the menuStrip1 control.

new1.MouseEnter and new1.MouseLeave handlers
private void new1_MouseEnter(object sender, EventArgs e)

{

 hint1.Text = (sender as ToolStripMenuItem).ToolTipText;

}

private void new1_MouseLeave(object sender, EventArgs e)

{

 hint1.Text = "";

}

In addition, define an event handler for the MenuDeactivate event for the

menuStrip1 control:

menuStrip1.MenuDeactivate handler
private void menuStrip1_MenuDeactivate(object sender,

 EventArgs e)

{

 hint1.Text = "Ready";

}

Result. When you move the mouse cursor over the File menu items, a hint

to the selected menu item (if this menu item is available) is displayed on the sta-

tus bar. For other menu items, the hint is not displayed on the status bar. When

exiting the menu, the text Ready is restored on the status bar.

Disadvantage. When you move the mouse over a menu item from the File

group, an additional tooltip appears near this item. The tooltip text duplicates the

hint text on the status bar and therefore does not provide any additional infor-

mation.

Correction. In the constructor of the Form1 class, add a statement that sup-

presses the display of tooltips for all items of the File drop-down menu:

file1.DropDown.ShowItemToolTips = false;

Remark. You can set the ShowItemToolTips property for the main menu in

the Properties window for the menuStrip1 control (note that this property is set

to False by default). However, you can customize it for drop-down submenus

(objects of ToolStripDropDown type) only programmatically.

151

Comments
1. There are certain problems with displaying menu hints in the MenuStrip

and ToolStripMenuItem controls. The implementation presented in this section is

insufficient, since it does not allow getting hints for menu items by navigating

through them using the keyboard. It is interesting to note that the predecessor

of the ToolStripMenuItem class, the MenuItem class intended to be used in con-

junction with the “old” MainMenu type menu, had the Select event, which was

better suited to this task, since it reacted to the selection of a menu item in any

way: both with a mouse and a keyboard (however, the event associated with

the loss of selection was not provided, therefore, to correctly change the

tooltips, it was necessary to provide all menu items with event handlers for the

Select event). Neither the ToolStripMenuItem class nor the MeniStrip class provide

events similar to the Select event.

2. Most of the “usual” visual controls (not related to menus, toolbars, and

status bars) do not have a property similar to ToolTipText. However, for any vis-

ual control, you can show a tooltip by using the ToolTip non-visual control. In

addition to a large number of properties that allow you to customize the ap-

pearance of the displayed tooltip, the ToolTip control has a SetToolTip(control,
hint) method that associates the hint string with the visual control. The

GetToolTip(control) method allows you to get the value of the tooltip associated

with the control visual control. After adding the ToolTip control to the form, all

visual controls of the form will display a property of the form ToolTip on

toolTip1 in the Properties window. This property allows you to easily adjust

tooltip strings in design mode. Using the Popup event of the ToolTip control,

you can redirect the display of tooltip text to other controls (for example, to the

status bar).

152

17. Formatting a document: TEXTEDIT6 project

The TEXTEDIT6 project finishes a series of projects related to the devel-

opment of a fully functional text editor. This project describes how to replace

a TextBox control with a RichTextBox control, which allows you to format differ-

ent pieces of text in different ways. We consider the capabilities of the

RichTextBox control related to formatting fonts and paragraphs. In addition, we

describe tools that allow to determine the position of the cursor in the text and

save the text in various formats.

17.1. Replacing the TextBox control
with the RichTextBox control

The previously developed TEXTEDIT5 project (see Chapter 16) should be

used as a template for the TEXTEDIT6 project.

In order to replace the textBox1 control of TextBox type already present in

Form1 with a RichTextBox control (with richer formatting capabilities), it is

enough to slightly correct the Form1.Designer.cs file. Recall that this file con-

tains information that was added to the project while working with the form de-

signer (including the menu designer) and the Properties window, so there is

usually no need to explicitly edit it. However, nothing prevents you from mak-

ing changes to the Form1.Designer.cs file.

Load the Form1.Designer.cs file into the editor (the easiest way to do this

is using the Solution Explorer window), find the line in it
private System.Windows.Forms.TextBox textBox1;

and change it as follows:

private System.Windows.Forms.TextBoxRichTextBox textBox1;

Thus, we have changed the type of the textBox1 control. We will not change

the name of the control, since it is used repeatedly in the existing code of our

program.

We also need to change the statement that creates the textBox1 control. This

statement is contained in the same Form1.Designer.cs file in the Windows

Form Designer generated code section, which is hidden by default. Expand

this section by clicking the + sign to the left of its header and find the statement
this.textBox1 = new System.Windows.Forms.TextBox();

To find the specified statement, you can, for example, organize a search for

the word textBox1 (for the search modes available in the Visual Studio envi-

ronment, see Comment 2 in Section 9.5). Modify the found statement as fol-

lows:

this.textBox1 = new System.Windows.Forms.TextBoxRichTextBox();

153

After making these changes, the Form1.Designer.cs file can be closed by

right-clicking on its tab header and choosing Close from the context menu that

appears (or simply pressing Ctrl+F4).

The RichTextBox control allows you to set different formatting settings for

different pieces of text. These settings are saved with the text in a special format

called Rich Text Format (RTF format). Files containing text in this format usual-

ly have the .rtf extension. Let us modify the program to use the additional func-

tionality of the RichTextBox control.

For the saveFileDialog1 and openFileDialog1 controls, change the DefaultExt
property to rtf and the Filter property to RTF files|* .rtf.

Modify the SaveToFile and open1_Click methods of the Form1 class:
private void SaveToFile(string path)

{

 File.WriteAllText(path, textBox1.Text);

 textBox1.SaveFile(path, RichTextBoxStreamType.RichText);

 textBox1.Modified = false;

}

private void open1_Click(object sender, EventArgs e)

{

 if (TextSaved())

 if (openFileDialog1.ShowDialog() == DialogResult.OK)

 {

 string path = openFileDialog1.FileName;

 textBox1.Text = File.ReadAllText(path);

 textBox1.LoadFile(path, RichTextBoxStreamType.RichText);

 Text = "Text Editor - " + Path.GetFileName(path);

 saveFileDialog1.FileName = path;

 openFileDialog1.FileName = "";

 }

}

In the bold1_Click and font1_Click methods, replace all textBox1.Font frag-

ments with textBox1.SelectionFont (bold1_Click should have three such frag-

ments, and font1_Click should have four fragments).

In the fontColor1_Click method, replace all textBox1.ForeColor fragments

with textBox1.SelectionColor (there should be two such fragments).

In the backgroundColor1_Click method, replace all textBox1.BackColor

fragments with textBox1.SelectionBackColor (there should be two such frag-

ments).

In the leftJustify1_Click method, replace textBox1.TextAlign with

textBox1.SelectionAlignment in the last statement.

Finally, set the EnableAutoDragDrop property of the textBox1 control to True.

154

Result. Font formatting commands now affect the selection or (if there is

no selection in the text) subsequent characters entered. Paragraph alignment

commands affect the selected paragraphs including paragraphs in which only

part of the text is selected or (if no paragraphs are selected) the current para-

graph. You can save text in a file with format settings (the default file extension

is .rtf). When loading files in RTF format, the text is displayed on the screen

with the format settings saved.

If the text does not fit in height in the editor area, a vertical scroll bar ap-

pears on the right (recall that the TextBox control does not have the same ability

to automatically display a vertical scroll bar). Lines that are too wide are, as be-

fore, automatically wrapped to a new line (see Comment 5 in Section 12.3).

Thanks to the True value of the EnableAutoDragDrop property, the editor

provides a drag-and-drop mode for selections: if you left-click on the selection,

you can move it to a new location; if you hold down the Ctrl key while dragging

(in this case, a + sign is displayed near the mouse cursor), copying of the selec-

tion is performed instead of its moving.

Disadvantages. (1) When you move the cursor to an area of text with a dif-

ferent formatting, the state of the shortcut buttons and formatting items in the

Format menu does not change. (2) The Modified attribute is not cleared when

a new file is loaded. (3) When the New and Open commands are executed, the

formatting settings in the menu and on the toolbar are not adjusted.

In addition to these easily identifiable disadvantages, the new version of our

program contains an error that is not easy to find. In order to detect this error,

you need to select a piece of text containing more than one type of font (for ex-

ample, Times New Roman and Arial fonts) and try to execute one of the font

style setting commands (Bold, Italic, or Underline) or set a new type of font for

the selection using the Font command. In this situation, a NullReferenceException

will be thrown.

All these disadvantages and errors will be corrected in the next section.

Comments
1. When changing the methods related to saving and loading files, the

SaveFile and LoadFile methods of the RichTextBox control were used (the TextBox

control does not have similar methods).

2. When changing methods related to formatting, the SelectionFont,
SelectionColor, SelectionBackColor, and SelectionAlignment properties of the

RichTextBox control were used. All these properties allow you to define and

change the formatting options for the selection or (in the absence of selection)

the formatting options for the position of the text at which the keyboard cursor

(the caret) is. The first property is responsible for the characteristics of the

font, the second for the color of the characters, the third for the background

color, and the fourth for the horizontal alignment of the paragraph. Some other

properties related to paragraph formatting will be used in Section 17.3.

155

17.2. Correcting the state of shortcut buttons and menu
commands when changing the current format

Add a new SetEnabled method to the Form1 class:

private void SetEnabled(bool value)

{

 bold1.Enabled = bold10.Enabled =

 italic1.Enabled = italic10.Enabled =

 underline1.Enabled = underline10.Enabled =

 font1.Enabled = value;

}

Define an event handler for the SelectionChanged event for the textBox1 con-

trol:

textBox1.SelectionChanged handler
private void textBox1_SelectionChanged(object sender, EventArgs e)

{

 Font f = textBox1.SelectionFont;

 SetEnabled(f != null);

 if (f != null)

 {

 bold1.Checked = bold10.Checked = f.Bold;

 italic1.Checked = italic10.Checked = f.Italic;

 underline1.Checked = underline10.Checked = f.Underline;

 }

 ToolStripMenuItem mi = leftJustify1;

 switch (textBox1.SelectionAlignment)

 {

 case HorizontalAlignment.Center:

 mi = center1; break;

 case HorizontalAlignment.Right:

 mi = rightJustify1; break;

 }

 if (mi == alignItem) return;

 alignItem.Checked = GetButton(alignItem).Checked = false;

 mi.CheckState = CheckState.Indeterminate;

 GetButton(mi).Checked = true;

 alignItem = mi;

}

In the new1_Click method, after the statement
saveFileDialog1.FileName = "";

insert the following statement:

156

textBox1_SelectionChanged(this, null);

In the open1_Click method, after the statement
openFileDialog1.FileName = "";

insert the following statements:

textBox1.Modified = false;

textBox1_SelectionChanged(this, null);

Result. We have corrected all the disadvantages and errors noted in Sec-

tion 17.1. In particular, the state of shortcut buttons and menu items now match-

es the format of the current text position.

If a fragment is selected in the text, the appearance of menu items and

shortcut buttons depends on whether the selection contains parts with different

formatting. If the selection contains several types of fonts, then the font setting

menu items (Bold, Italic, Underline, and Font) and corresponding shortcut but-

tons become unavailable (this avoids the error noted in Section 17.1). If the se-

lection contains one type of font, then the indicated menu and toolbar controls

are available; they are in the checked state only if the entire selection has this

font style (for example, the Bold shortcut button will be “pressed” only if the

entire selection is in bold).

Commands related to text alignment behave in a similar way: if the same

alignment method is set for the entire selection, then the menu item and shortcut

button corresponding to this alignment method are in the checked state; if the

selection contains paragraphs with different alignment options, the Left justify

command and its associated shortcut button are in the checked state.

Comment
When using the SelectionFont property, it is necessary to remember about its

important feature: if there is more than one type of font in the selection, the

SelectionFont property is null. In this situation, attempting to access any member

of the SelectionFont property (such as its Bold, Italic, or Underline properties) will

throw a NullReferenceException. For this reason, in the textBox1_SelectionChanged

method, the members of the SelectionFont property are accessed only if this

property is not null. However, there are two more methods in our program that

call the members of the SelectionFont property: these are new versions of the

bold1_Click and font1_Click methods. To avoid a possible error when executing

the bold1_Click and font1_Click methods, all menu items and shortcut buttons that

call these methods are made unavailable if a fragment containing more than one

type of font is selected in the text (for this, the SetEnabled helper method is

called in the textBox1_SelectionChanged handler).

Note that there is no danger of an error for text alignment commands: if the

selection contains several alignment options, the SelectionAlignment property re-

turns the HorizontalAlignment.Left value. Thus, in such a situation, the menu item

and the shortcut button corresponding to the left alignment will be in the

checked state, which seems quite natural. There are also no problems with the

157

commands for setting the color of symbols and background (see Section 13.3):

if, when executing these commands, there is a selection with different color op-

tions, then the black color will be highlighted in the color selection dialog box.

17.3. Setting paragraph properties

Add a new form named Form2 to the project and place a container control

of GroupBox type on this form (this control will be named groupBox1). Place three

labels (label1, label2, label3) and three NumericUpDown controls (numericUpDown1,

numericUpDown2, numericUpDown3) in the groupBox1 control. Also, place another

label (label4), a drop-down list (the ComboBox control named comboBox1),

a checkbox (checkBox1), and two buttons (button1 and button2) on Form2.

Remark. The ComboBox control will be considered in more detail in the

LISTBOXES project (see Chapter 19).

Configure the properties of Form2 and its controls and arrange the controls

as shown in Fig. 17.1. Recall that setting Modifiers = Internal allows to refer to

a control from another form of the same project.

Properties
Form2: Text = Paragraph, MaximizeBox = False,

 MinimizeBox = False, FormBorderStyle = FixedDialog,

 StartPosition = CenterScreen, ShowInTaskbar = False,

 AcceptButton = button1, CancelButton = button2

groupBox1: Text = Indentation

label1: Text = From left:

label2: Text = From right:

label3: Text = From bullet:, Enabled = False

label4: Text = Alignment:

numericUpDown1: Modifiers = Internal

numericUpDown2: Modifiers = Internal

numericUpDown3: Modifiers = Internal, Enabled = False

comboBox1: DropDownStyle = DropDownList, Modifiers = Internal

checkBox1: Text = Bulleted paragraph, Modifiers = Internal

button1: Text = OK, DialogResult = OK

button2: Text = Cancel

Additionally, define the Items property of the comboBox1 control. A special

dialog box is provided for this property; this dialog box can be called from the

Properties window by clicking the ellipsis button near the property text box.

In our case, three alignment options must be input into this dialog box, one per

line:

Left aligned

Right aligned

Centered

158

Figure: 17.1. Form2 view

Define a handler for the CheckedChanged event for the checkBox1 control:

checkBox1.Click handler (Form2)
private void checkBox1_Click(object sender, EventArgs e)

{

 label3.Enabled = numericUpDown3.Enabled = checkBox1.Checked;

 numericUpDown3.Value = numericUpDown3.Enabled ? 10 : 0;

}

At the beginning of the Form1 class declaration, add a declaration of the

new field:

private Form2 form2 = new Form2();

In the constructor of the Form1 class, add the statement

AddOwnedForm(form2);

Add a menu item with text &Paragraph... to the drop-down menu associ-

ated with the Format menu item (see Sections 13.1–13.4). Set the Name proper-

ty of the added menu item to paragraph1 and define the Click event handler for

this menu item:

paragraph1.Click handler (Form1)
private void paragraph1_Click(object sender, EventArgs e)

{

 form2.checkBox1.Checked = textBox1.SelectionBullet;

 form2.comboBox1.SelectedIndex =

 (int)textBox1.SelectionAlignment;

 form2.numericUpDown1.Value = textBox1.SelectionIndent;

 form2.numericUpDown2.Value = textBox1.SelectionRightIndent;

 form2.numericUpDown3.Value = textBox1.BulletIndent;

 if (form2.ShowDialog() == DialogResult.OK)

 {

 textBox1.SelectionIndent = (int)form2.numericUpDown1.Value;

 textBox1.SelectionRightIndent =

 (int)form2.numericUpDown2.Value;

 textBox1.BulletIndent = (int)form2.numericUpDown3.Value;

159

 textBox1.SelectionBullet = form2.checkBox1.Checked;

 textBox1.SelectionAlignment =

 (HorizontalAlignment)form2.comboBox1.SelectedIndex;

 textBox1_SelectionChanged(this, null);

 }

}

Result. New menu item Format | Paragraph... allows you to customize

the properties of the current paragraph or a group of selected paragraphs. During

its execution, the Paragraph dialog box is displayed, in which you can specify

the amount of indentation of the paragraph from the left and right bounds of the

editing area (in pixels), as well as the type of alignment. In addition, by selecting

the Bulleted paragraph checkbox, you can add a bullet in the form of a black

marker () to the paragraph; in this case, you can specify the amount of indenta-

tion from the bullet to the text.

Comments
1. In this section, another group of properties of the RichTextBox control was

used, which is related to the paragraph settings:

 SelectionIndent and SelectionRightIndent set the indentation in pixels from

the left and right bounds of the editing area, respectively;

 SelectionBullet is boolean; if it is true, then the paragraph is labeled with

the bullet, that is, a special marker ;

 BulletIndent sets the indent in pixels from the bullet to the text following it.

2. The order of items in the comboBox1 drop-down list corresponds to the

order in which the alignment options are specified in the HorizontalAlignment
enumeration: Left (0), Right (1), Center (2). Due to this circumstance, to deter-

mine the selected alignment option, it is enough to convert the SelectedIndex

property of the comboBox1 control, which contains the number of the selected

list item, to the HorizontalAlignment type (see the last but one statement in the

paragraph1_Click method). A subsequent call to the textBox1_SelectionChanged

handler adjusts the state of alignment-related menu items and shortcut buttons.

17.4. Display the current row and column

Proceeding in the same way as in Section 16.1, add another (fifth) label

called position1 to the statusStrip1 status bar and set the properties of the added

label:

Properties
position1: Text = 1 : 1, AutoSize = False, BorderSides = All,

 BorderStyle = Sunken, Size.Width = 60

Press the left mouse button on the position1 label and move it to the left of

the hint1 label (with the text Ready). As a result, the indicated labels will be

swapped (see Fig. 17.2).

160

Fig. 17.2. The lower part of Form1

Add a new piece of code to the beginning of the textBox1_SelectionChanged

method:

int x = textBox1.SelectionStart,

 y = textBox1.GetLineFromCharIndex(x),

 x0 = textBox1.GetFirstCharIndexFromtLine(y);

position1.Text = string.Format("{0} : {1}", y + 1, x - x0 + 1);

Result. The status bar displays the current position of the keyboard cursor

(the caret) in the format row : column, where row is the line number and column

is the character number in the line (lines and characters are numbered from 1). If

the edited text contains a selection, then the position of the beginning of this se-

lection is indicated.

Comment
To determine the current position of the keyboard cursor in the text of the

textBox1 control (this text is contained in the Text property of this control), the

following properties and methods are used that are available for both the Text-
Box control and the RichTextBox control:

 the previously mentioned SelectionStart property (see Comment 2 in Sec-

tion 8.1), which allows you to determine the position of the cursor or the be-

ginning of the selection in the Text string;

 the GetLineFromCharIndex(n) method, which allows you to determine the

line number for the character with the number n in the Text string property;

 the GetFirstCharIndexFromLine(n) method, which allows you to determine

the first character number of the line with number n in the Text property.

Both strings and characters are numbered from 0, so we add 1 to the result-

ing values.

Instead of the GetFirstCharIndexFromLine(n) method, we can use the

GetFirstCharIndexOfCurrentLine method (without parameters), which allows us to

determine the character number from which the current line (that is, the line

containing the keyboard cursor) begins.

Note that the line-separated content of the TextBox and RichTextBox controls

can be accessed using the Lines property, which is an array of strings.

Also note one more method related to the position of the keyboard cursor:

ScrollToCaret. This method, which has no parameters, allows you to display on

the screen a piece of text containing the keyboard cursor. If the keyboard cur-

sor is already on the screen when the method is called, the ScrollToCaret method

does nothing.

161

17.5. Loading and saving text without format settings

For the saveFileDialog1 and openFileDialog1 controls, change the values of the

Filter property to RTF files|* .rtf|Text files|* .txt|All files|*. *.

As a result, three filters are associated with the specified dialog boxes: for

RTF files (with the .rtf extension), for plain text files (with the .txt extension),

and for arbitrary files with any valid name and extension.

Add a new GetFileType method to the Form1 class:

private RichTextBoxStreamType GetFileType(string path)

{

 string s = Path.GetExtension(path).ToUpper();

 return s == ".RTF" ? RichTextBoxStreamType.RichText :

 RichTextBoxStreamType.PlainText;

}

Modify the SaveToFile and open1_Click methods:
private void SaveToFile(string path)

{

 textBox1.SaveFile(path, RichTextBoxStreamType.RichText);

 textBox1.SaveFile(path, GetFileType(path));

 textBox1.Modified = false;

}

private void open1_Click(object sender, EventArgs e)

{

 if (TextSaved())

 if (openFileDialog1.ShowDialog() == DialogResult.OK)

 {

 string path = openFileDialog1.FileName;

 textBox1.LoadFile(path, RichTextBoxStreamType.RichText);

 textBox1.LoadFile(path, GetFileType(path));

 Text = "Text Editor - " + Path.GetFileName(path);

 saveFileDialog1.FileName = path;

 openFileDialog1.FileName = "";

 }

}

Result. When saving a document in a file with any extension other than

.rtf, only plain text (without format settings) is written to the file in ANSI encod-

ing, that is, in the one-byte encoding used by Windows by default. However, in

the editor itself, the format settings are preserved and the formatted text can be

saved later in a file with the .rtf extension. It is now possible to load into the

editor both files in RTF format (with the .rtf extension) and plain text files. In

order to speed up the selection of files with the .rtf and .txt extensions, as well

as to be able to select files with any extension, the dialog boxes for opening and

162

saving files provide appropriate filters (RTF files, Text files, All files) listed in

the File type drop-down list.

Here is a screenshot of a running program (Fig. 17.3). The keyboard cursor

is positioned on the first centered line.

Figure: 17.3. View of the running TEXTEDIT6 application

Comments
1. To extract the extension from the file name (see the GetFileType method),

the GetExtension method of the Path class is used, which returns the file exten-

sion along with the preceding dot (.). If the filename does not contain an exten-

sion or ends in a dot, an empty string is returned. See also Comment 2 in Sec-

tion 18.2 about using the ToUpper method.

2. The SaveFile and LoadFile methods of the RichTextBox control allow sav-

ing and loading data in various formats. The format is determined by the se-

cond parameter of these methods, which is of the RichTextBoxStreamType enu-

merated type. The new version of the program uses not only the RichText for-

mat option (for RTF files), but also the PlainText format option, which allows

you to save text without format settings in the standard Windows ANSI encod-

ing. Among other formats, we note UnicodePlainText, which allows you to save

text without format settings in Unicode encoding.

3. When working with the saveFileDialog1 dialog box for saving file, the us-

er may experience certain inconveniences. For example, if the user created

a file test.rtf and now wants to save it in the plain text format, then he/she will

need to delete the .rtf extension in the File name text box of the save dialog

box and explicitly input the .txt extension. In such situations, it is more natural

to change the file type using the File type drop-down list. However, changing

the file type in this list does not automatically change the file extension in the

File name text box. The required change could have been provided in the event

handler associated with file type changing, but, unfortunately, such an event is

missing in the SaveFileDialog and OpenFileDialog controls.

163

18. Colors: COLORS project

The COLORS project introduces classes for working with color (Color,
KnownColor, ColorTranslator) and controls that provide data scrolling (TrackBar,
HScrollBar, VScrollBar). It also describes how to access controls through shortcut

keys for their associated labels and discusses options for anchoring controls to

boundaries of the form.

18.1. Defining a color as a combination of four color
components. Track bars and scroll bars

After creating the COLORS project, place the TrackBar control (named

trackBar1) on Form1 and set the properties for the form and this control:

Properties
Form1: Text = Colors, StartPosition = CenterScreen

trackBar1: LargeChange = 32, Maximum = 255,

 TickFrequency = 32, TickStyle = Both

With trackBar1 still selected, press Ctrl+C (one time) and then Ctrl+V (four

times). As a result, four more TrackBar controls named trackBar2 – trackBar5 will

be added to the form, and, for all these controls, all the property values (with the

exception of Name and Location) will be the same as values of the corresponding

properties of the trackBar1 control (note that such copying of controls can also be

performed using the form’s context menu).

For the trackBar1 control, additionally set the Value property to 255 (for oth-

er TrackBar controls, this property should remain equal to 0). Place all controls

on the form from top to bottom (see Fig. 18.1).

After that, place five labels (label1 – label5) on the form and set their Text
properties to Alpha, Red, Green, Blue, Gray, respectively.

The labels must be vertically aligned to the middle of the corresponding

TrackBar controls (see Fig. 18.1). For this, it is convenient to use the Layout

panel (recall that it can be displayed on the screen using the View | Toolbars |

Layout menu command). To perform alignment, first click on one of the

TrackBar controls, then click on the corresponding label while pressing the Ctrl

key, and then click on the Align Middles button on the Layout panel. The

order in which the controls are selected is significant, since the alignment is per-

formed on the active control (its markers are white).

Finally, place the Panel container control (named panel1) at the bottom of

the form and place another label (named label6) in this control. Set the properties

for label6 as follows (the easiest way to set values for the ForeColor and BackColor

164

properties is to type these values on the keyboard without using the drop-down

list):

Properties
label6: Text = Color, AutoSize = False, Dock = Fill,

 ForeColor = White, BackColor = Black

The final view of the form at this stage of its development is shown in

Fig. 18.1.

Fig. 18.1. Form1 view at the initial stage of development

Define the Scroll event handler for trackBar1, then connect this handler to the

Scroll events of trackBar2 – trackBar4 (the Scroll event handler for trackBar5 will be

added later, in Section 18.3):

trackBar1.Scroll handler
private void trackBar1_Scroll(object sender, EventArgs e)

{

 label6.BackColor = Color.FromArgb(trackBar1.Value,

 trackBar2.Value, trackBar3.Value, trackBar4.Value);

}

For the panel1 control, set a background image. A good option is the Chry-

santhemum.jpg file located in the Windows 7 system image directory Us-

ers\Public\Pictures\Sample Pictures. Windows 10 does not include this file,

but it can be downloaded from the archive.org web-site using the link

https://archive.org/details/Chrysanthemum_20160913.

To set the Chrysanthemum.jpg file as the background image for the panel1

control, first select this control in the form (since the panel1 control is under la-
bel6, the easiest way is to select this label and then press the Esc key). Then se-

lect the BackgroundImage property of the panel1 control in the Properties win-

165

dow and click the ellipsis button . In the Select Resource window that ap-

pears, do the following steps to load the required image (recall that these steps

were previously described in Section 15.1): press the Import button (if the but-

ton is unavailable, then first select the Project resource file radio button); in the

new Open window, select the required image file and then click the Open but-

ton or press the Enter key. After performing the described actions, the name of

the selected file will appear in the list of resources and will be highlighted; in

addition, an image taken from this file will appear on the right-hand side of the

Select Resource window. It remains to close the Select Resource window by

clicking OK. As a result, the BackgroundImage property of panel1 will be set to

COLORS.Properties.Resources.Chrysanthemum. In addition, a new item

Chrysanthemum.jpg will appear in the Resources section of the Solution Ex-

plorer window. It should be noted that the background image of panel1 is over-

lapped with label6, so we cannot see it on the form yet.

Use non-aspect ratio scaling for the background image of panel1 by setting

the BackgroundImageLayout property to Stretch (see Section 21.4 for more in-

formation on image view modes).

Result. The background color of label6 is defined as a combination of four

color components, namely transparency (Alpha) and the intensity of the three

base colors: Red, Green, and Blue. Each color component can vary from 0 to

255; a value of 255 for the Alpha component corresponds to full opacity. In our

program, the values of the color components are set by the position of the four

corresponding TrackBar controls (the trackBar5 control is not used yet). Because

the panel under label6 contains a background image, this image can be seen if

a transparency level Alpha is less than 255.

Comments

1. Although the Visual Studio form designer provides a convenient way to

align controls relative to each other (as well as relative to form boundaries) by

simple dragging and dropping controls across the form, the Layout panel is

very useful in some cases. In particular, it allows you to easily align groups of

controls, increase proportionally the horizontal or vertical spacing between

controls, set the selected controls to the same width or height, change the

z-coordinate of a control by moving it “up” or “down” (for z-order, see Com-

ment 4 in Section 9.1).

You can add to this panel new buttons by clicking the Add or Remove

Buttons item on the right-hand side of this panel. From the drop-down list of

buttons that appears, you can select, for instance, the buttons for centering con-

trol or grouping controls horisontally or vertically in the form, as well as the

shortcut button for the Tab Order menu item (for this menu item, see Com-

ment 1 in Section 8.1).

2. The TrackBar control (a track bar, or a slider) is convenient to use in sit-

uations when you need to set a parameter that accepts integer values from

166

a certain (not too large) range. When configuring the trackBar1 control in our

project, we set the values of the following properties: LargeChange (step when

pressing the PgUp and PgDn keys), Maximum (the maximum allowable value),

TickFrequency (the delta between tick marks drawn), TickStyle (the view of the

tick marks), and Value (the current value of the track bar). There was no need to

change the other properties, as we can use their default values. Let us list some

of these properties: SmallChange (when pressing the arrow keys, by default

is 1), Minimum (the minimum allowable value, by default is 0), and Orientation

(determines the orientation of the track bar, the default is Horizontal). Note

that changing the slider by the LargeChange value is performed not only when

you press PgUp or PgDn, but also when you click on a control to the left or

right of a slider that marks the current value of the track bar (a slider is also

called a thumb or scroll box).

3. The TrackBar control has one drawback: when changing its “thickness”

(that is, the vertical size Height in the case of a horizontal orientation or the hor-

izontal size Width in the case of a vertical orientation), the track bar elements

are not centered relative to its new borders, and the track bar size is not propor-

tionally changed (note that the thickness of the track bar can only be changed

when the AutoSize property is set to False). This makes it impossible to use

track bars of a small thickness.

If the default track bar thickness is not suitable, you can use alternative

controls with similar properties: horizontal and vertical scroll bars HScrollBar
and VScrollBar. In doing so, however, two important points should be taken into

account.

First, by default, the scroll bar cannot receive focus (even when the mouse

is clicked on it). If this behavior is undesirable, then you should set the value of

its TabStop property to True.

Second, the maximum value that the Value property of the scroll bar can

take is Maximum – LargeScroll + 1, that is, it can be less than Maximum. Such

a strange, at first glance, behavior turns out to be actually quite natural, since

the LargeScroll value for the scroll bar determines not only the step when press-

ing PgUp or PgDn, but also the size (width) of the slider relative the entire

scroll bar, and the Value property corresponds to the position of the slider bor-

der (more precisely, the left border for a horizontal scroll bar and the top bor-

der for a vertical one). Therefore, if, for example, the Minimum property is 1, the

Maximum property is 10, and the LargeScroll is 5, then the slider will have

a width that is half the width of the scroll area, and, therefore, when it is moved

to the right (or down for a vertical scroll bar), its left (respectively, upper) bor-

der will be located only at the value 6. This value will be the maximum possible

value of the Value property (see the above formula). Note that this behavior is

well suited for scrolling through text information using a vertical scroll bar, if

we assume that the Value property corresponds to the number of the top line of

167

text displayed on the screen. In the example above, with Value = 6, the last 5

lines of the text will be displayed on the screen (from 6 to 10) and further

scrolling down is no longer required.

If scroll bars were used in our example, then, to provide a range of 0–255

for the Value property while LargeScroll = 32, the Maximum property would have

to be set to 286 (that is, 255 + LargeScroll – 1). Of course, all such problems are

removed if we set LargeScroll equal to 1, however, in this case, the ability to it-

erate over values with a large step (for example, using the PgUp and PgDn

keys) will be lost.

Concluding a brief overview of the features of scroll bars, we note that, us-

ing their Scroll event handler, you can very flexibly respond to any user actions

related to the scroll bar (allowing, for example, not to handle each change in

the Value property if the user drags the slider with the mouse, but react only to

the final value of the Value property at the moment of releasing the slider). The

Scroll event of the TrackBar control does not have such capabilities.

18.2. Inverting colors and output color constants

Add new statements to the trackBar1_Scroll method:
private void trackBar1_Scroll(object sender, EventArgs e)

{

 label6.BackColor = Color.FromArgb(trackBar1.Value,

 trackBar2.Value, trackBar3.Value, trackBar4.Value);

 Color c = label6.BackColor;

 label6.ForeColor = Color.FromArgb(0xFF ^ c.R, 0xFF ^ c.G,

 0xFF ^ c.B);

 label6.Text = c.Name.ToUpper();

}

Result. The numerical value of the current color in ARGB format (Alpha –

Red – Green – Blue) is displayed on the panel as a hexadecimal number. In this

case, two characters are used for each color component, and the letters A – F

(corresponding to hexadecimal digits from 10 to 15) are displayed in upper case.

For example, the color value for maroon (an opaque deep red color of intensi-

ty 128) is FF800000. Text color is opaque and inverse to the panel background

color. See also Comments 1 and 2.

Disadvantage 1. When the program starts, label6 contains the text Color,

not a numeric value of opaque black color.

Correction. Add the following statement to the constructor of the Form1

class:

trackBar1_Scroll(null, null);

Result. Now the trackBar1_Scroll method is called at the time of form crea-

tion, which ensures the correct setting of the label6 text. When calling the meth-

168

od, both of its parameters can be set to null, since none of the parameters are

used in this method.

Remark. The noted disadvantage could be corrected simply by setting the

value of the Text property of label6 to FF000000 (a numeric value of opaque

black color) in the Properties window. However, the used method of correction

is more flexible, since it allows the initial text of the label to be displayed cor-

rectly after any changes to the trackBar1_Scroll method that can be made later

(see Section 18.4).

Disadvantage 2. If transparency is less than 16, label6 displays less than

8 digits (in particular, with completely transparent black, the label will contain

a single digit 0). This way of representing color is inconvenient; it is more natu-

ral to always display a hexadecimal number with 8 characters (two characters

for each color component).

Correction. In the trackBar1_Scroll method, replace the last statement as fol-

lows:
label6.Text = c.Name.ToUpper();

label6.Text = c.ToArgb().ToString("X8");

Result. Now the number c.ToArgb() is displayed in hexadecimal format X

with capital Latin letters and always contains 8 characters (we used the format-

ting version of the ToString method for the int type).

Comments
1. Read-only properties A, R, G, B of the Color class allow you to get the

numerical value of the corresponding color component. To invert each of the

base colors, the bitwise operator ^ (exclusive OR) is used. When using a ver-

sion of the FromArgb method with three parameters (R, G, B), the transparency A

is assumed to be 255.

2. The ToUpper method of the string class converts all alphabetic characters

in the string to uppercase (the reverse method is named ToLower). Characters

that are not letters are not modified. The ToUpper and ToLower methods correct-

ly process not only Latin alphabet, but also letters of other alphabets.

18.3. Grayscale colors

Define the Scroll event handler for the trackBar5 control:

trackBar5.Scroll handler
private void trackBar5_Scroll(object sender, EventArgs e)

{

 trackBar2.Value = trackBar3.Value =

 trackBar4.Value = trackBar5.Value;

}

Result. Moving the trackBar5 slider causes all three base colors to change

synchronously resulting in different grayscale colors (the transparency value

does not change).

169

Error. Although moving the trackBar5 slider changes the trackBar2 —

trackBar4 sliders synchronously, this change does not affect the color of label6.

This error is due to the fact that, when the Value property is programmatically

changed, the Scroll event is not raised.

Correction. Add the following statement to the trackBar5_Scroll method:

trackBar1_Scroll(null, null);

Remark. If the program must react not only to changes in the position of

the slider made by the user, but also to any changes of the Value property, then

we can use the ValueChanged event handler. For example, if we had defined the

ValueChanged event handler for the trackBar1 — trackBar4 controls instead of the

Scroll event handler, then the first version of the trackBar5_Scroll method would

work correctly.

It should be noted, however, that the ValueChanged event handler will be

called much more often than the Scroll event handler. In particular, when the

trackBar5_Scroll method is executed, this handler will be called 3 times.

18.4. Displaying color names

Modify the trackBar1_Scroll method as follows:
private void trackBar1_Scroll(object sender, EventArgs e)

{

 label6.BackColor = Color.FromArgb(trackBar1.Value,

 trackBar2.Value, trackBar3.Value, trackBar4.Value);

 Color c = label6.BackColor;

 label6.ForeColor = Color.FromArgb(0xFF ^ c.R,

 0xFF ^ c.G, 0xFF ^ c.B);

 label6.Text = c.ToArgb().ToString("X8");

 string s = c.ToArgb().ToString("X8");

 switch (c.A)

 {

 case 0:

 s += " Transparent";

 break;

 case 255:

 string

 s0 = ColorTranslator

 .FromWin32(ColorTranslator.ToWin32(c)).Name;

 if (s0.Substring(0, 2) != "ff")

 s += " " + s0;

 break;

 }

 label6.Text = s;

170

}

Result. In the case when the current color is associated with a certain name

(for example, Black or Maroon), the panel displays not only the numerical val-

ue of the current color in hexadecimal format, but also its name. If transparency

has a zero value, then the text Transparent is displayed next to the numerical

value of the color.

Comments
1. All colors that have names (the named colors) are contained in the

KnownColor enumeration. The Color structure has the ToKnownColor method that

returns a corresponding KnownColor enumeration member for any named color

or 0 if the color is not a named color. However, the usefulness of the

ToKnownColor method is significantly limited by the fact that, if a color was

created using the FromArgb method, then calling the ToKnownColor method for it

will necessarily return 0 (even if the color with the specified components is in-

cluded in the set of named colors). This behavior is due to the following feature

of the Color structure: when analyzing (in particular, comparing) structures of

Color type, not only their color components are taken into account, but also the

way these structures were created. For example, if the structure c1 of Color type

was created using the FromArgb(0, 0, 0) method and the structure c2 was created

using the FromName("Black") method, then they will be considered different, alt-

hough both represent opaque black color (note also that the expression c1.Name

will return ff000000 and the expression c2.Name will return Black).

2. Since the direct using the ToKnownColor method in our case will not al-

low obtaining the required result, it would be possible to form an array of all

named colors, using the KnownColor enumeration for this (see Section 19.1),

and then compare the color characteristics of each named color with the color

characteristics of the color of interest. However, .NET library includes the

ColorTranslator class that makes it easier to recognize a named color. If you cre-

ate a color using the FromWin32 method of the ColorTranslator class, then, in the

case of a named color, its Name property will return the name of the color; oth-

erwise, Name will return the numeric representation of the color in ARGB for-

mat. To be able to apply the FromWin32 method to an object of Color type, this

object must first be converted to the integer RGB format using the ToWin32

method. Note that, when using the methods of the ColorTranslator class, trans-

parency will not be taken into account, since the color format for Win32 (RGB

format) does not provide such a color component. Therefore, we can use the

methods of the ColorTranslator class only for opaque colors, that is, colors with

Alpha = 255. This approach is perfectly valid, since all named colors, except for

the fully transparent color named Transparent, are opaque. In addition, we

handle the situation of full transparency Alpha = 0 in a special way.

3. Checking s0.Substring(0, 2) != "ff" allows us to determine if string s0 con-

tains a color name or a numeric representation of a color. In the latter case, the

171

string s0 always starts with two ff characters, corresponding to Alpha = 255 (ful-

ly opaque). To get a substring of string s0, the Substring(start, len) method of the

string class is used, which returns a substring of length len starting at the charac-

ter with index start. There is a version of this method with one start parameter;

this version returns the rest of the string, starting at the start character.

18.5. Controls and their associated labels

Modify the Text properties for labels label1 – label5 by adding the & charac-

ter: &Alpha, &Red, &Green, &Blue, Gra&y (see Fig. 18.2). For a Gray la-

bel, the & character selects the last letter, since all previous letters have already

been used as selected characters in other labels.

Fig. 18.2. The final view of Form1

Using the View | Tab Order menu command (see Comment 1 in Sec-

tion 8.1), set the TabIndex property values for controls placed on the form as fol-

lows: label1 – 0, trackBar1 – 1, label2 – 2, trackBar2 – 3, label3 – 4, trackBar3 – 5,

label4 – 6, trackBar4 – 7, label5 – 8, trackBar5 – 9.

Result. Switching between track bars can now be done using Alt-

combinations of characters underlined in the labels to the track bars (Alt+A for

the track bar that determines the transparency, Alt+R for the track bar that de-

termines the intensity of the red color, etc.).

Remark. If, when starting the program, there are no underlined letters in

the labels, then press the Alt key. In addition, the current track bar may not have

a selection frame. To display the selection frame, press the Tab key.

Comment
If the Alt-combination is assigned to a control that cannot receive focus

(for example, the Label control), then, when such a combination is pressed,

172

an attempt is made to set focus on the next control (that is, on the control with

a greater TabIndex property value). If several controls have the same TabIndex

property value, then they are selected in z-order, that is, in ascending

z-coordinate (for z-order, see Comment 4 in Section 9.1).

18.6. Anchoring controls

Change the Anchor property for the trackBar1 – trackBar5 controls by setting

it to Top, Left, Right. When setting the Anchor property in the Properties win-

dow, a special panel is displayed. To configure the required option in this panel,

select the line leading to the right border of the panel, since the lines leading to

the top and left border are already highlighted by default).

Using similar actions, set the Anchor property of the panel1 control equal to

Top, Bottom, Left, Right (in this case, in the Anchor property settings panel, se-

lect the lines leading to the bottom and right borders, leaving also selected lines

leading to the top and left borders). We emphasize that it is necessary to config-

ure the Anchor property of panel1, not label6 which is contained in the panel.

Result. If you change the size of Form1 during program execution, the size

of the controls will be adjusted in accordance with the new size of the form: the

trackBar1 – trackBar5 track bars change the width, the panel1 panel change the

width and height (see Fig. 18.3). See also Comment 1.

Fig. 18.3. View of the running COLORS application after increasing the size of the form

Disadvantage 1. When you reduce the size of the form, a situation may

arise when panel1 is no longer visible, and the track bars become too narrow (see

Fig. 18.4).

Correction. Add the following statement to the constructor of the Form1

class:

MinimumSize = Size;

173

Fig. 18.4. View of the running COLORS application after decreasing the size of the form

Result. Now the size of the form can only be increased (compared to the in-

itial one), since the minimum allowable size of the form, determined by the

MinimumSize property, matches the initial size of the form stored in the Size

property (see Comment 2).

Disadvantage 2. If you increase the size of the form (the size of panel1 will

increase accordingly), then, when you change the position of the track bars,

flickering occurs on the panel (in particular, the background image appears for

a while, even in the case of completely opaque colors). It is interesting to note

that flickering does not occur on the part of the panel that matches its initial size.

Correction. Change the Dock property of label6 to None and define the

Resize event handler for Form1:

Form1.Resize handler
private void Form1_Resize(object sender, EventArgs e)

{

 label6.Size = panel1.Size;

}

Result. Now there is no flickering at any size of the form (see Comment 3).

Comments
1. The Anchor property is responsible for anchoring of visual controls. For

any control, by means of this property, you can specify the borders of the form

(or rather, the parent control) to anchor. By default, most controls are anchored

to the top and left borders. When the form is resized, the distance from its “an-

chored” borders to the bounds of the control remains unchanged.

If the control is not anchored to any of the vertical borders, then, when the

form is resized, the width of the control will not change and its distance to the

left and right borders will change synchronously, ensuring that its relative posi-

tion with respect to these borders is preserved. A similar effect is achieved

when the control is not anchored to any of the horizontal borders.

Let us give an example. If you place a control in the center of the form and

set anchoring to all borders, then whenever the form is resized, the control will

remain in the center of the form and its size will change. If, however, anchor-

ing is completely removed for such a control (that is, if its Anchor property is

174

set to None), then the control will still remain in the center of the form, but its

size will not change.

Another way to keep the size and position of controls in sync with respect

to the form is docking, which can be set using the Dock property (docking is

discussed in detail in Section 21.3). These methods are mutually exclusive: if

you change the default value for an Anchor or Dock property, the other property

will automatically change to the default.

2. In addition to the MinimumSize property used to correct the diadvantage 1,

there is a similar MaximumSize property that allows you to limit the maximum

size of the form. If you do not need to restrict the size for some dimension, then

it is enough to set the corresponding coordinate of the MinimumSize and

MaximumSize properties to 0. Note that all visual controls also have these prop-

erties; by default, each of them is 0; 0, that is, there is no size limitation.

3. The disadvantage 2 is apparently connected with the not quite correct

implementation of the Fill docking mode, which we used to make label6 com-

pletely overlap the client area of panel1. To correct this, we turned off docking

mode; instead, we explicitly resize label1 to fit the panel using the form’s

Resize event handler, which is executed whenever the form is resized.

175

19. Drop-down list and list box: LISTBOXES project

The LISTBOXES project is related to the ComboBox and ListBox controls

that implement the combo box, drop-down list, and list box. Methods for per-

forming standard actions on list items (adding, deleting, inserting, changing the

order, etc.) are considered, and actions are described that allow you to move list

items in drag-and-drop mode. The project also covers the KnownColor enumera-

tion and the Beep method of the Console class.

19.1. Creating and using drop-down lists

After creating the LISTBOX1 project, place the comboBox1 and panel1 con-

trols on Form1 (Fig. 19.1). Set the properties of the form and the added controls:

Properties
Form1: Text = ComboBox and ListBox, MaximizeBox = False,

 FormBorderStyle = FixedSingle, StartPosition = CenterScreen

comboBox1: Text = empty string, DropDownStyle = DropDownList

panel1: BorderStyle = Fixed3D

Fig. 19.1. Form1 view at the initial stage of development

Note that, by setting the DropDownStyle property of the comboBox1 control

equal to DropDownList, we thereby disabled the ability to input new values for

this control (only values from the existing list are allowed to be selected).

Thus, the ComboBox control allows you to create not only ordinary drop-

down lists, but also drop-down lists that allow text input (such a control is called

a combo box, since it combines the properties of lists and text boxes). For combo

boxes, the DropDownStyle property must be set to DropDown.

Add new statements to the constructor for the Form1 class:

176

public Form1()

{

 InitializeComponent();

 string[] s = Enum.GetNames(typeof(KnownColor));

 int n1 = Array.IndexOf(s, "AliceBlue"),

 cnt = Array.IndexOf(s, "YellowGreen") - n1 + 1;

 string[] s0 = new string[cnt];

 Array.Copy(s,n1,s0,0,cnt);

 comboBox1.Items.AddRange(s0);

 comboBox1.SelectedIndex = 0;

}

Define an event handler for the SelectedIndexChanged event for the

comboBox1 control:

comboBox1.SelectedIndexChanged handler
private void comboBox1_SelectedIndexChanged(object sender,

 EventArgs e)

{

 panel1.BackColor = Color.FromName(comboBox1

 .Items[comboBox1.SelectedIndex].ToString());

}

Result. When the program starts, the drop-down list contains names of all

named colors (see Section 18.4, Comment 1). The names are listed alphabetical-

ly. Selecting a name from the list changes the color of panel1 accordingly.

Comments
1. When forming a list of all named colors, the KnownColor enumeration

was used. This enumeration starts with the names of the system colors (that is,

the colors associated with various Windows elements; this group consists of

26 names), then there is the Transparent color (which is defined as transpar-

ent white), and then the names of the regular colors follow in alphabetical order

(from AliceBlue to YellowGreen; the number of named regular colors is 140).

In .NET 2.0, seven more system colors were added to the end of the KnownColor
enumeration.

We can get an array of all names in the enumeration using the GetNames

method. The Copy method of the Array class is used to select a range that con-

tains only names of regular colors. The color indices of the AliceBlue and

YellowGreen color names are determined using the IndexOf method of the Array

class (the explicit constants 28 and 167 could have been used, but this would

make the program less understandable).

2. To add the next item to the drop-down list, we can use the Add method of

the Items collection property of the ComboBox control. However, if we want to

177

immediately add all elements from some array of strings to the list (as in our

case), it is more convenient and faster to use the AddRange method.

3. Note that the items of the Items collection are described as object, so you

need to use the ToString method to get their string representation.

19.2. List box: adding and removing items

Place listBox1, panel2, two labels label1 and label2 on Form1 (the panel2 con-

trol should be placed under the panel1 control, as shown in Figure 19.2). Set the

properties of the added controls:

Properties
panel2: BorderStyle = Fixed3D

label1: Text = Add, AutoSize = False, TextAlign = MiddleCenter,

 BorderStyle = FixedSingle

label2: Text = Delete, AutoSize = False,

 TextAlign = MiddleCenter, BorderStyle = FixedSingle

Fig. 25.2. Form1 view at the intermediate stage of development

Define handlers for the SelectedIndexChanged event for the listBox1 control

and for the Click events for the label1 and label2 controls:

listBox1.SelectedIndexChanged, label1.Click, label2.Click handlers
private void listBox1_SelectedIndexChanged(object sender,

 EventArgs e)

{

 panel2.Visible = listBox1.Items.Count > 0;

 if (listBox1.SelectedIndex == -1)

 return;

 panel2.BackColor = Color.FromName(listBox1

 .Items[listBox1.SelectedIndex].ToString());

}

private void label1_Click(object sender, EventArgs e)

178

{

 listBox1.SelectedIndex = listBox1.Items.Add(comboBox1.Text);

}

private void label2_Click(object sender, EventArgs e)

{

 listBox1.Items.RemoveAt(listBox1.SelectedIndex);

}

Result. When you click on the Add label, the selected color name from the

comboBox1 drop-down list is added to listBox1 and also Panel2 color corresponds

to the selected list item. If the list box is empty, panel2 is not displayed on the

form. Clicking on the Delete label removes the selected item from the list box.

See also Comments 1–2.

Disadvantage. After performing the delete operation, the list box does not

contain any selected item (although the item surrounded by a frame remains). In

this situation, the SelectedIndex property of the listBox1 control is –1, so clicking

the Delete label again results in a runtime error (since –1 is not a valid value for

the RemoveAt method). For the same reason, clicking on the Delete label in the

case of an empty list box results in an error.

Correction. Change the label2_Click method as follows:
private void label2_Click(object sender, EventArgs e)

{

 listBox1.Items.RemoveAt(listBox1.SelectedIndex);

 int i = listBox1.SelectedIndex;

 if (i == -1)

 {

 Console.Beep();

 return;

 }

 listBox1.Items.RemoveAt(i);

 if (i == listBox1.Items.Count)

 i--;

 listBox1.SelectedIndex = i;

}

Result. When you delete an item in the middle of the list, the selection re-

mains at its current position (which is now occupied by the next item). When

you delete an item at the end of the list, the previous item is selected. Thus, if

the list is not empty, it always has a selected item. If you click the Delete label

when the list is empty, you will hear a beep (see Comment 3).

Remark. Note that in the listBox1_SelectedIndexChanged method, we have

provided special handling of the situation SelectedIndex == –1, since this situation

occurs when a list item is deleting.

179

Comments
1. The selected list item is displayed on a colored (usually blue) back-

ground. If the list has focus (that is, it is the active control of the form) and the

Tab key has been used at least once to switch between form controls, then the

selected item is additionally outlined with a dotted frame. An item surrounded

by such a frame is called a current item.

In some interface libraries, you can distinguish between the current and se-

lected list item. This is very useful when a list can contain multiple selected

items. However, although the ListBox control in the Windows Forms library

has a SelectionMode property that allows you to set the multiple selection mode,

the above mentioned ability to determine the current list item is not provided in

this library. In other words, if several items are selected in the list, then you can

find out by software means which items are selected (that is, highlighted), but

there are no easy way to determine which item is current (that is, outlined with

a dotted frame). This circumstance makes it difficult to work with multi-

selection list box, since it does not allow programmatically reacting to changes

in its important characteristic – the position of the current item.

When developing Windows Forms applications, it is preferable to use a list

of checkboxes (called a checked list box) rather than a multi-selection list box

(see the CHECKBOXES project, Chapter 20), since, along with the ability to

work with the current (and at the same time, selected) item, the user is able to

mark any number of list items by setting their checkboxes (thus, when using

the checked list box, the program has access to all information about both cur-

rent and marked list items).

2. To see the change in the current list item during various operations, it is

necessary that the list does not lose focus. Therefore, we connected the execu-

tion of list operations with labels since these controls, unlike usual buttons,

cannot receive focus. Thus, there are only two controls on the form that can re-

ceive focus: comboBox1 and listBox1. By switching between them using the Tab

key, it is easy to check the features of displaying a list with and without focus.

3. In addition to the Beep method without parameters, the Console class has

a version of this method with two integer parameters: the first parameter de-

termines the sound frequency (in the range from 37 to 32767 Hz), the second

determines the sound duration (in milliseconds).

19.3. Additional list operations

Place five new labels (label3 – label7) on Form1 and set their properties

(since the AutoSize, TextAlign, and BorderStyle properties have the same values for

all labels, it is convenient to set them at the same time having previously select-

ed all labels on the form).

Properties
label3: Text = Insert, TextAlign = MiddleCenter,

180

 AutoSize = False, BorderStyle = FixedSingle

label4: Text = Move Up, TextAlign = MiddleCenter,

 AutoSize = False, BorderStyle = FixedSingle

label5: Text = Move Down, TextAlign = MiddleCenter,

 AutoSize = False, BorderStyle = FixedSingle

label6: Text = Save To File, TextAlign = MiddleCenter,

 AutoSize = False, BorderStyle = FixedSingle

label7: Text = Load From File, TextAlign = MiddleCenter,

 AutoSize = False, BorderStyle = FixedSingle

Arrange the new labels as shown in Fig. 19.3.

Fig. 19.3. The final view of Form1

At the top of the Form1.cs file, add the directive

using System.IO;

Define the Click event handlers for the added labels:

label3.Click, label4.Click, label5.Click, label6.Click, label7.Click
handlers

private void label3_Click(object sender, EventArgs e)

{

 int i = listBox1.SelectedIndex;

 if (i == -1)

 label1_Click(this, null);

 else

 {

 listBox1.Items.Insert(i, comboBox1.Text);

 listBox1.SelectedIndex = i;

 }

}

181

private void label4_Click(object sender, EventArgs e)

{

 int i = listBox1.SelectedIndex;

 if (i <= 0)

 {

 Console.Beep();

 return;

 }

 object x = listBox1.Items[i];

 listBox1.Items[i] = listBox1.Items[i - 1];

 listBox1.Items[i - 1] = x;

 listBox1.SelectedIndex = i - 1;

}

private void label5_Click(object sender, EventArgs e)

{

 int i = listBox1.SelectedIndex;

 if (i == -1 || i == listBox1.Items.Count - 1)

 {

 Console.Beep();

 return;

 }

 object x = listBox1.Items[i];

 listBox1.Items[i] = listBox1.Items[i + 1];

 listBox1.Items[i + 1] = x;

 listBox1.SelectedIndex = i + 1;

}

private void label6_Click(object sender, EventArgs e)

{

 if (listBox1.Items.Count == 0)

 {

 Console.Beep();

 return;

 }

 File.WriteAllLines("LISTBOXES.dat",

 listBox1.Items.Cast<string>());

}

private void label7_Click(object sender, EventArgs e)

{

 if (!File.Exists("LISTBOXES.dat"))

 {

182

 Console.Beep();

 return;

 }

 listBox1.Items.Clear();

 foreach (var e1 in File.ReadLines("LISTBOXES.dat"))

 listBox1.Items.Add(e1);

 listBox1.SelectedIndex = listBox1.Items.Count - 1;

}

Result. Clicking on the Insert label inserts a new item in front of the se-

lected one and selects the inserted item (in the case of an empty list, the Insert

command and the Add command perform the same actions). The Move Up and

Move Down commands allow you to move the selected item up and down the

list, respectively, while maintaining its selection (when you try to move the first

item up or the last item down, a sound signal is generated). The Save To File

command allows you to save the contents of a non-empty list in the

LISTBOXES.dat file, the Load From File command allows you to load data

from this file into the list (if the file is missing, a beep sounds when trying to

load data).

Comments
1. When implementing new actions, the Insert (inserting a new item at the

specified position) and Clear (clearing the list of items) methods of the Items

collection of the ListBox control were used.

2. To check if a file exists, we used the Exists method of the File class.

To write a collection of strings to a text file and read the contents of a text

file as a collection of strings, it is convenient to use two static methods of the

File class: WriteAllLines and ReadLines. These methods automatically open a file

with the specified name, perform the required actions, and then close it.

The WriteAllLines method requires you to specify the collection of strings to

write, either as an array or as a sequence (of IEnumerable<string> type); a se-

quence of the required type can be obtained from the Items collection using the

Cast<string> LINQ query.

When reading strings from a file, you do not need to perform any typecast-

ing: it is enough to organize a foreach loop, in which all the lines read from the

file by the ReadLines method will be processed.

19.4. Performing list operations with the mouse

Connect the DoubleClick event of the listBox1 control to the existing la-
bel2_Click handler.

Set the AllowDrop property of the listBox1 control to True and add a field iSrc

(an index of source) to the Form1 class:

private int iSrc;

183

This field will contain the index of the item being dragged from listBox1 in

drag-and-drop mode:

Define the MouseDown event handlers for the comboBox1 and listBox1 con-

trols and the DragEnter and DragDrop event handlers for the listBox1 control:

comboBox1.MouseDown, listBox1.MouseDown, listBox1.DragEnter,
listBox1.DragDrop handlers

private void comboBox1_MouseDown(object sender, MouseEventArgs e)

{

 if (e.Button == MouseButtons.Right)

 DoDragDrop(comboBox1.Text, DragDropEffects.Copy);

}

private void listBox1_MouseDown(object sender, MouseEventArgs e)

{

 if (e.Button == MouseButtons.Right)

 {

 iSrc = listBox1.IndexFromPoint(e.Location);

 if (iSrc != ListBox.NoMatches)

 DoDragDrop(listBox1.Items[iSrc].ToString(),

 DragDropEffects.Move);

 }

}

private void listBox1_DragEnter(object sender, DragEventArgs e)

{

 e.Effect = DragDropEffects.All;

}

private void listBox1_DragDrop(object sender, DragEventArgs e)

{

 if (e.AllowedEffect == DragDropEffects.Move)

 listBox1.Items.RemoveAt(iSrc);

 string s = e.Data.GetData(typeof(string)) as string;

 int iTrg = listBox1.IndexFromPoint(listBox1

 .PointToClient(new Point(e.X, e.Y)));

 if (iTrg == ListBox.NoMatches)

 listBox1.SelectedIndex = listBox1.Items.Add(s);

 else

 {

 listBox1.Items.Insert(iTrg, s);

 listBox1.SelectedIndex = iTrg;

 }

}

184

Result. When you double-click on an item in the list, this item is removed

(due to connecting the DoubleClick event of the listBox1 control to the label2_Click

handler). In addition, you can now use the drag-and-drop mode to move a list

item to a new position: just press the right mouse button on any (not necessarily

selected) list item and drag it to a new location. You can also drag and drop text

from the comboBox1 drop-down list into the list box. If the text is dropped onto

an existing list item, it is inserted at the specified position; if the text is dropped

into a free area of the list box, it is added to the list. In any case, this item will

become selected.

When dragging text from the comboBox1 drop-down list, the cursor image

contains the “+” sign, which means the Copy drag effect; when dragging the

listBox1 list item to a new location, the cursor does not contain the “+” sign,

which means the Move drag effect. See also Comments 1–3.

Disadvantage. At the beginning of dragging from the drop-down list, the

cursor looks like a prohibition sign .

Correction. Set the AllowDrop property of the comboBox1 control to True

and define the DragEnter event handler for the comboBox1 control:

comboBox1.DragEnter handler
private void comboBox1_DragEnter(object sender, DragEventArgs e)

{

 e.Effect = DragDropEffects.Copy;

}

Result. Now, when dragging an item from the drop-down list, the cursor

over this list will have a permissive view (although, of course, dropping the item

over the drop-down list will not have any effect). Note that, if dragging is started

from the list box, the cursor above the comboBox1 control will have a prohibition

sign; this is quite correct and is due to the fact that the drop-down list as a drop

receiver reacts only to the Copy drag effect.

Comments
1. We have chosen the right mouse button as the initiator of the drag-and-

drop mode since both the comboBox1 drop-down list and the listBox1 list box

should respond to the left mouse button in the standard way: when left-

clicking, the drop-down list expands and the item of the list box is selected. In

addition, we have also associated a special action (deleting an item) with dou-

ble-left-clicking on listBox1. If the drag-and-drop mode were activated by press-

ing the left mouse button, then the standard actions associated with the left but-

ton would be impossible to perform.

2. Methods, events, and properties associated with drag-and-drop mode

were described in detail in Chapter 10. The only new feature of this drag-and-

drop implementation is the use of the IndexFromPoint(p) method of the ListBox

control. This method allows you to determine the index of the list item contain-

ing point p with the specified coordinates (if the specified point does not con-

185

tain a list item, then the method returns the special value ListBox.NoMatches).

The IndexFromPoint method is used in the listBox1_MouseDown and

listBox1_DragDrop handlers. Since this method requires specifying the local co-

ordinates of point p relative to the ListBox control, and only screen coordinates

can be obtained in the drag-and-drop event handlers, we have to additionally

use the listBox1.PointToClient method in the listBox1_DragDrop handler. Note that

we do not need to call the listBox1.PointToClient method in the

listBox1_MouseDown handler, since the local coordinates are returned in the

mouse event handlers.

3. Due to the use of different drag effects (Copy and Move), the user can

determine by the type of drag cursor which control is the data source (this is

comboBox1 for the Copy effect and listBox1 for the Move effect). By checking

the current drag effect (namely the e.AllowedEffect property) at the beginning of

the listBox1_DragDrop method, we determine whether the source item should be

removed from the list.

186

20. Checkboxes and checked list boxes:
CHECKBOXES project

The CHECKBOXES project is related to the CheckBox and CheckedListBox

controls that implement a checkbox and a list of checkboxes (called a checked

list box). Methods for checking and changing the state of checkboxes are con-

sidered, as well as the features of using checkboxes that take three states.

20.1. Checkboxes and checking their state

After creating the CHECKBOXES project, place three checkboxes

(checkBox1 – checkBox3), three labels (label1 – label3), and a button (button1) on

Form1. Set the properties of the form and the added controls and arrange the con-

trols as shown in Fig. 20.1.

Properties (Form1 and its controls)
Form1: Text = Checkboxes, MaximizeBox = False,

 FormBorderStyle = FixedSingle, AcceptButton = button1

checkBox1: Text = Group 1, RightToLeft = Yes

checkBox2: Text = Group 2, RightToLeft = Yes

checkBox3: Text = Group 3, RightToLeft = Yes

label1–label3: Text = No items selected

button1: Text = Select Items

Fig. 20.1. Form1 view

Since the label1 – label3 labels have the same value of the Text property, it is

convenient to set this property for all labels at once, after selecting them.

Add a new form to the project (it will be named Form2) and place three

CheckedListBox controls on it (they will be named checkedListBox1 –

checkedListBox3), as well as the button1 button. Set the properties of Form2 and its

controls. When defining the Items property of CheckedListBox controls, a special

dialog box is used; in our case, the set of numbers must be input into this dialog

box (5 numbers for checkedListBox1, 4 numbers for checkedListBox2, 6 numbers

for checkedListBox3), typing each number on a separate line.

187

Properties (Form2 and its controls)
Form2: Text = Select Items, MaximizeBox = False,

 MinimizeBox = False, FormBorderStyle = FixedDialog,

 StartPosition = CenterScreen, ShowInTaskbar = False,

 AcceptButton = button1

checkedListBox1: Items = 1 2 3 4 5, CheckOnClick = True

checkedListBox2: Items = 1 2 3 4, CheckOnClick = True

checkedListBox3: Items = 1 2 3 4 5 6, CheckOnClick = True

button1: Text = OK, DialogResult = OK

Arrange the controls as shown in Fig. 20.2

Fig. 20.2. Form2 view

Add a new field to the Form1 class declaration:

private Form2 form2 = new Form2();

In the constructor of the Form1 class, add the statement

AddOwnedForm(form2);

Define the Click event handler for button1 on Form1 and the FormClosed event

handler for Form2:

button1.Click handler for Form1
private void button1_Click(object sender, EventArgs e)

{

 form2.ShowDialog();

}

Form2.FormClosed handler
private void Form2_FormClosed(object sender,

 FormClosedEventArgs e)

{

 for (int i = 1; i <= 3; i++)

 // processing each group of checkboxes

 {

 string s = "";

 CheckedListBox clb =

188

 Controls["checkedListBox" + i] as CheckedListBox;

 int k = clb.CheckedIndices.Count;

 if (k == 0)

 s = "No items selected";

 else

 if (k == clb.Items.Count)

 s = "All items are selected";

 else

 {

 foreach (int j in clb.CheckedIndices)

 s = s + " " + clb.Items[j].ToString();

 s = "Selected:" + s;

 }

 // display information about checked items

 // in the corresponding label of Form1

 Owner.Controls["label" + i].Text = s;

 }

}

Result. When you open the Select Items dialog box, then check some

items in each checkbox group (called a checked list box), and finally close the

dialog box by clicking OK or pressing Enter, the main Checkboxes form dis-

plays information about the checked items in each group. The checkboxes on the

main form are not used yet.

Comments
1. To check an item (or uncheck a checked item) in the checked list box,

you can select this item using the arrow keys and press the spacebar. The

method of action using the mouse depends on the value of the CheckOnClick

property. If this property is set to False (the default value), then clicking an

item selects this item (makes it highlighted) but does not change its state yet: to

change the state of the item, you must click on an already selected item again.

If the CheckOnClick property is True, clicking an item immediately changes its

state. The second way seems more natural, since this is how one checkbox (the

CheckBox control) behaves by default.

2. You can track user actions related to moving through the list of check-

boxes and changing their state using the handlers of two events.

The SelectedIndexChanged event occurs when a user selects an item using

the keyboard or mouse, as well as when user clicks by the left mouse button on

an already selected item (you can determine the index of the selected item us-

ing the SelectedIndex property, which is both readable and writable; indexing,

as usual, is from zero). In addition, the SelectedIndexChanged event occurs

when the SelectedIndex property is programmatically changed.

189

The ItemCheck event occurs when a user or program try to change the state

of an item; in this case, using the properties of the second parameter e of this

event handler, you can determine the previous state (the CurrentValue property),

new state (NewValue), and the item’s index (Index). The CurrentValue and

NewValue properties are of the CheckState enumerated type (with three possible

values: Checked, Unchecked, and Indeterminate). It is important to note that the

NewValue property can be changed in a handler; this feature is especially useful

when using three-state checkboxes (see Section 20.3), because user actions

cannot set a checked list box item in the Indeterminate state (note that the

CheckedListBox control, unlike the CheckBox control, does not have the

ThreeState property that allows the user to sequentially set a checkbox in each

of the three states).

3. The easiest way to get information about checked items is using the

CheckedIndices collection property, which contains the indices of the checked

items (that is, items in the Checked and Indeterminate state). The number of

checked items can be obtained using the Count property of the CheckedIndices

collection (of course, the Items collection, which contains all the items, also has

the Count property). In addition, there is the CheckedItems collection property,

which contains the checked items themselves.

To get the text associated with an item from the CheckedItems or Items col-

lection, apply the ToString method to this item.

If you need to obtain the state of an item, you can use the

GetItemCheckState(ind) method of the CheckedListBox control, which returns the

state of the item with index ind (the method returns a value of the CheckState

enumerated type). The paired method SetItemCheckState(ind, st) allows you to

set the item with index ind to the state st. If the Indeterminate state is not used,

then it is easier to use the GetItemChecked(ind) method (which returns a boolean

value) and the SetItemChecked(ind, val) method with a boolean parameter val.
The true value corresponds to a checked item, the false value corresponds to an

unchecked item.

20.2. Global setting of CheckedListBox items

Define an event handler for the CheckStateChanged event for checkBox1 and

then connect this handler to the CheckStateChanged event of checkBox2 and

checkBox3.

checkBox1.CheckStateChanged handler
private void checkBox1_CheckStateChanged(object sender,

 EventArgs e)

{

 CheckBox cb = sender as CheckBox;

 string s = "label" + cb.Name[cb.Name.Length - 1];

 Controls[s].Text = cb.Checked ? "All items are selected" :

190

 "No items selected";

}

Also, change the button1_Click method of Form1:
private void button1_Click(object sender, EventArgs e)

{

 for (int i = 1; i <= 3; i++)

 {

 CheckedListBox clb =

 form2.Controls["checkedListBox" + i] as CheckedListBox;

 bool b = (Controls["checkBox" + i] as CheckBox).Checked;

 for (int j = 0; j < clb.Items.Count; j++)

 clb.SetItemChecked(j, b);

 }

 form2.ShowDialog();

}

Result. Checking the checkbox on the main form ensures that all items of

the corresponding checked list box will be checked; unchecking the checkbox

ensures that all items will be unchecked. When you open the Select Items dialog

box, its checked list boxes are adjusted.

Disadvantage. Explicitly made settings in the dialog box do not affect the

appearance of the checkboxes of the main form. Usually, if some of the items

are selected in the dialog box, then the corresponding checkbox on the main

form is shown in the CheckState.Indeterminate state. The necessary corrections

will be made in the next section.

Comment
Instead of the CheckStateChanged event, we could use the CheckedChanged

event. We used the CheckStateChanged event because it (unlike the Checked-
Changed event) also occurs when the checkbox state changes from Checked to

Indeterminate and vice versa. This feature will be useful in the future.

20.3. Using checkboxes with three states

Modify the Form2_FormClosed method of Form2 as follows:
private void Form2_FormClosed(object sender,

 FormClosedEventArgs e)

{

 for (int i = 1; i <= 3; i++)

 {

 string s = "";

 CheckedListBox clb =

 Controls["checkedListBox" + i] as CheckedListBox;

 CheckBox cb = Owner.Controls["checkBox" + i] as CheckBox;

191

 int k = clb.CheckedIndices.Count;

 if (k == 0)

 s = "No items selected";

 cb.Checked = false;

 else

 if (k == clb.Items.Count)

 s = "All items are selected";

 cb.CheckState = CheckState.Checked;

 else

 {

 string s = "";

 foreach (int j in clb.CheckedIndices)

 s = s + " " + clb.Items[j].ToString();

 s = "Selected:" + s;

 Owner.Controls["label" + i].Text = s;

 cb.CheckState = CheckState.Indeterminate;

 }

 Owner.Controls["label" + i].Text = s;

 }

}

Result. If some of the items are selected in one of the checked list boxes in

the Select Items window, the corresponding checkbox in the Checkboxes win-

dow changes its state to Indeterminate. Note that the user cannot explicitly set the

checkboxes of the Checkboxes window to the Indeterminate state, because, for

the checkBox1 – checkBox3 controls, the ThreeState property is false (the default

value).

Remark. Note that, in the new version of the Form2_FormClosed handler,

the label text changes only when some of the items are checked. If all items are

checked or none of them is checked, then the change in the label text occurs in

the checkBox1_CheckStateChanged handler (see Section 20.2), which is automati-

cally called whenever the checkbox state changes.

Error 1. The text All items are selected is always displayed near the

checkbox, which is in the Indeterminate state. This error is due to the fact that,

when the CheckState property is set to Indeterminate, the CheckStateChanged event

handler is called, but the Checked property is true in this situation, so the corre-

sponding label obtains the text All items are selected.

Correction. Change the checkBox1_CheckStateChanged method of Form1 as

follows:
private void checkBox1_CheckStateChanged(object sender,

 EventArgs e)

{

192

 CheckBox cb = sender as CheckBox;

 if (cb.CheckState == CheckState.Indeterminate)

 return;

 string s = "label" + cb.Name[cb.Name.Length - 1];

 Controls[s].Text = cb.Checked ? "All items are selected" :

 "No items selected";

}

Error 2. When you reopen the Select Items window, all items are checked

in the checked list boxes corresponding to the indeterminate checkboxes of the

main window. This error, like Error 1, is due to the fact that the Checked proper-

ty is true for both checked and indeterminate checkboxes.

Correction. Change the button1_Click method of Form1 as follows:
private void button1_Click(object sender, EventArgs e)

{

 for (int i = 1; i <= 3; i++)

 {

 CheckedListBox clb =

 form2.Controls["checkedListBox" + i] as CheckedListBox;

 bool b = (Controls["checkBox" + i] as CheckBox).Checked;

 CheckState cs =

 (Controls["checkBox" + i] as CheckBox).CheckState;

 if (cs == CheckState.Indeterminate)

 continue;

 for (int j = 0; j < clb.Items.Count; j++)

 clb.SetItemChecked(j, b);

 clb.SetItemCheckState(j, cs);

 }

 form2.ShowDialog();

}

Result. Now, in the case of indeterminate checkboxes, the corresponding

checked list boxes are not changed when the Select Items window is opened.

For this, the new version of the button1_Click method uses the continue statement,

which ensures the immediate termination of the current loop iteration.

193

21. Viewing images: IMGVIEW project

The IMGVIEW project describes how to use the TreeView and ListBox con-

trols and various classes from the System.IO namespace to visualize the directory

structure of a computer. In addition, we describe the SplitContainer and PictureBox

controls and discuss issues related to docking and using the Windows registry to

store information about the state of the application and then restore it.

21.1. Displaying a directory tree

Place a control of SplitContainer type on Form1 (we will call this control

a split container). This control will be named splitContainer1 and will immediate-

ly occupy the entire client area of the form (since its Dock property is Fill by de-

fault). The splitContainer1 control consists of two child panels (the left one named

Panel1 and the right one named Panel2); between these panels there is a splitter.

Dragging the splitter, you can increase the width of one panel by reducing the

width of the other. Each of the child panels can be selected; the properties of the

selected panel are displayed in the Properties window. The splitter cannot be

selected; clicking on it selects the entire splitContainer1 control (note that this is

the most convenient way to select a split container, since the rest of it is occu-

pied by child panels).

Remark. There is the Splitter control in the .NET visual control library, but

after including the SplitContainer control in .NET 2.0, a separate splitter control is

usually not used.

The specifics of working with the SplitContainer control will be discussed in

the next section. In this section, we will only use its left panel (Panel1). Place the

TreeView control (it will be named treeView1) on this panel and set the properties

of the form and this control. Recall that setting the Dock property in the Proper-

ties window displays a special panel; to select the required Fill option in this

panel, click on the central rectangle.

Properties
Form1: Text = Image Viewer, StartPosition = CenterScreen

treeView1: Dock = Fill, HideSelection = False

The form will take the view shown in Fig. 21.1.

Add a new directive to the list of using directives at the beginning of the

Form1.cs file:

using System.IO;

194

Fig. 21.1. Form1 view at the initial stage of development

In the Form1 class, define a helper method:

void MakeChildNodes(TreeNode node)

{

 node.Nodes.Clear();

 if (node.Tag.ToString() == "")

 foreach (var drive in DriveInfo.GetDrives())

 {

 if (!drive.IsReady)

 continue;

 TreeNode newNode = new TreeNode();

 newNode.Tag = drive.RootDirectory.FullName;

 newNode.Text = drive.Name;

 if (drive.VolumeLabel != "")

 newNode.Text += "[" + drive.VolumeLabel + "]";

 if (drive.RootDirectory.GetDirectories().Length > 0)

 newNode.Nodes.Add("*");

 node.Nodes.Add(newNode);

 }

 else

 {

 try

 {

 foreach (var subDir in Directory

 .GetDirectories(node.Tag.ToString()))

 {

 try

 {

 TreeNode newNode = new TreeNode();

 newNode.Tag = subDir;

195

 newNode.Text = Path.GetFileName(subDir);

 if (Directory.GetDirectories(subDir).Length > 0)

 newNode.Nodes.Add("*");

 node.Nodes.Add(newNode);

 }

 catch {}

 }

 }

 catch {}

 }

}

Define an event handler for the BeforeExpand event for the treeView1 con-

trol:

treeView1.BeforeExpand handler
private void treeView1_BeforeExpand (object sender,

 TreeViewCancelEventArgs e)

{

 MakeChildNodes(e.Node);

}

Add the following statements to the constructor of the Form1 class:

TreeNode node = new TreeNode();

node.Tag = "";

node.Text = "My Computer";

node.Nodes.Add("*");

treeView1.Nodes.Add(node);

treeView1.SelectedNode = node;

Result. When you start the program, the left panel of the form displays the

My Computer root node of the tree (hierarchical list) of the directory structure

of computer. When you expand this node, all currently available disks appear;

when you expand any disk, all its first-level directories appear. If the disk has

a label, it is displayed in square brackets next to the disk letter.

If the directory contains subdirectories, then it can also be expanded. Near

those nodes that can be expanded, a special expand marker is displayed, usually

in the form of a square with a “+” sign (Fig. 21.2). When expanding a node, the

marker view changes to a square with a “–” sign. To expand/collapse a node,

just click on the expand marker or double-click on the name of the required

node. A single click on the node name selects it.

You can also navigate the tree using the keyboard; the Up and Down arrow

keys move the selection to a node located above or below the current one, and

the Right and Left arrow keys expand the node (if it can be expanded) or, re-

spectively, collapse the node (if it is expanded). If the node is already collapsed

196

or there is no expand marker associated with it, then the Left key navigates to

the previous level directory (that is, the parent node for this node).

Fig. 21.2. View of the running IMGVIEW application at the initial stage of development

Comments
1. The main feature of the TreeView control, which allows creating trees

(hierarchical lists), is that each of its nodes (of TreeNode type) itself can be

a root of a tree. Checkboxes can be associated with tree nodes; it is enough to

set the CheckBoxes property of the TreeView control to True. In this case, the

tree will contain not only the selected item, but also a set of checked items. To

check or uncheck a checkbox, you can either click on the checkbox or press the

space bar.

The main events of the TreeView control are BeforeExpand, BeforeCollapse,

BeforeSelect, and BeforeCheck; these events occur when the user performs the

actions to expand, collapse, select, or check/uncheck some node of the tree, re-

spectively. You can determine for which tree node an event occurred using the

Node property of the parameter e of the handler. In addition, the parameter e

has the Cancel property that allows you to cancel the specified action (for this,

you just need to set e.Cancel equal to true). There are also the AfterExpand,

AfterCollapse, AfterSelect, and AfterCheck events of the TreeView control.

In addition, the TreeView control has the SelectedNode property that allows

you to determine or change the selected item. There is no SelectedIndex proper-

ty for a tree.

Both the TreeView and TreeNode classes have the Nodes collection property

that contains all the first-level children of the tree or node. In addition, the

TreeNode class has the follows read-only properties: Parent (returns the parent

node of a given node), Index (the index of the node in the Nodes collection of its

parent), and TreeNode (a reference to the tree that this node belongs to). The

name of the node that appears in the tree is contained in the Text property,

which is available for reading and writing.

2. The program uses classes from the System.IO namespace: the DriveInfo

class, which allows you to get information about disk devices of the computer

(this class was previously used in the DISKINFO project, see Chapter 2), and

197

the DirectoryInfo and Directory classes, which allow to get information about the

directory.

For the DriveInfo class, we use the static GetDrives method, which returns

a collection of all available disk devices (each member of the collection is also

of DriveInfo type), and the IsReady, Name, VolumeLabel, and RootDirectory proper-

ties. The IsReady property checks the availability of the device, Name returns its

name, and VolumeLabel returns the name of the label (the last two properties are

used to form a node name corresponding to the root directories of the available

devices). The RootDirectory property is of DirectoryInfo type. Using the

DirectoryInfo object, it is easy to determine all the characteristics of the directo-

ry: its name (Name), full name (FullName), an array of DirectoryInfo[] type with

information about all its subdirectories (obtained using the GetDirectories meth-

od), an array of FileInfo[] type with information about all its files (obtained using

the GetFiles method), etc.

The Directory class also has GetDirectories and GetFiles methods. These

methods are static; they are useful when you need to get a set of subdirectories

or files for a directory with a known name, which is specified as a method pa-

rameter. In the second part of the MakeChildNodes method, we use the Directo-
ry.GetDirectories method, as well as the GetFileName static method of the Path

class from the same System.IO namespace. This method extracts the name,

without the preceding path, from the fully qualified filename or directory.

3. When using a directory tree in a program, you should not build the entire

tree at once, since the number of directories on hard drives is usually very

large. A more efficient approach is to build a part of the tree when it needs to

be displayed on the screen. An additional advantage of such an approach is that

it allows you to easily update any part of the tree in a situation when you need

to take into account changes in the set of its nodes: to do this, you just collapse

this part and re-expand it.

To simplify the steps for displaying new devices, we create a tree with the

My Computer root node which contains all currently available devices. If

a new device is connected to the computer (for example, a USB drive) or if an

existing device becomes available (for example, as a result of loading a CD or

DVD into a device for reading them), then, to display these new devices, you

should simply collapse and re-expand the MyComputer root node.

We use a simple way to mark a tree node as expandable: a “dummy” child

node with name “*” is added to the Nodes collection of that node. This child is

never displayed on screen because we remove it and build a set of “real” child

nodes before expanding the parent node. Some authors suggest adding such

a dummy node to any tree node that you create. In this case, when you try to

expand a node that has no children, its expand marker simply disappears. We

did it differently: in our program, a dummy child is added only when a node

actually has children. This method requires additional time for finding children

198

(which we do using the GetDirectories method), but is more user-friendly, as it

immediately shows the presence of child nodes. Note that, by default, the

GetDirectories method only returns first-level subdirectories.

Also note the use of the Tag property of the TreeNode element to store the

full path to the directory that this tree node is associated with. For disk drives,

the full path to their root directory is stored. There is only one node in the di-

rectory tree that is not associated with a directory: the My Computer root node

whose the Tag property is an empty string.

4. The ExpandItem method uses two try – catch statements to handle errors

related to accessing directories. The outer try block is designed to correctly

handle a situation in which an attempt is made to access a directory that has

become inaccessible (either due to its deletion, or due to the disconnection of

the device containing this directory). In such a situation, expanding is canceled

and the expand marker disappears near this node. The inner try block (located

in the foreach loop) is intended to correctly handle the situation in which some

child directories block access to their contents (in this case, calling the

GetDirectories method for those directories will result to the exception). Such di-

rectories are simply not included in the list of child directories.

5. We changed the value of the HideSelection property to False so that the

selected node in the TreeView control is highlighted even when the control loses

focus (this property was previously described in Comment 2 of Section 8.1).

Disadvantage. Each time the program is launched, the user has to perform

the same actions to go to the desired directory.

Correction. Add a new helper method to the Form1 class:

TreeNode InitialExpanding(string fullPath)

{

 if (!Directory.Exists(fullPath))

 return null;

 string[] paths = fullPath.Split('\\');

 paths[0] += "\\";

 TreeNode rootNode = treeView1.Nodes[0];

 MakeChildNodes(rootNode);

 rootNode.Expand();

 TreeNode node = rootNode;

 foreach (var e in paths)

 {

 node = node.Nodes.Cast<TreeNode>()

 .First(e1 => e1.Text.ToUpper() == e.ToUpper());

 MakeChildNodes(node);

 node.Expand();

 }

199

 return node;

}

Define the Load event handler for the Form1 class:

Form1.Load handler
private void Form1_Load(object sender, EventArgs e)

{

 var node = InitialExpanding(Directory.GetCurrentDirectory());

 if (node != null)

 treeView1.SelectedNode = node;

}

Result. Now, when the program starts, it automatically switches to the cur-

rent directory (by default, it is the bin\Debug subdirectory, which is included in

the directory containing the developing project, see Fig. 21.3).

Fig. 21.3. View of the running IMGVIEW application with the selected current directory

Comments
1. In the future (see Section 21.6), we will modify the project in such a way

that, when the program starts, it switches to the directory that was selected be-

fore previous closing of the program. For this reason, the InitialExpanding meth-

od checks existing the required directory. If the directory is missing, the meth-

od returns null. To check for the existence of a directory with the required

name, we use the static Exists method of the Directory class. The static method

of the File class of the same name allows you to check the existence of a file.

2. To split the full path to the initial directory into parts, a version of the

Split method of the string class with a character parameter defining the separator

(in our case, the '\' character) is used. Since the slash is required in the root di-

rectory name, it is added to the first element of the generated array.

200

3. The InitialExpanding method first expands the root node of the treeView1

control (this is the only child node in its Nodes collection) and then iterates

over all the directories included in the full path to the initial directory. The next

subdirectory included in the path of the initial directory is searched for in the

corresponding collection of child nodes of the current node. After finding it, it

expands resulting in a new set of nodes in the tree, in which the next part of the

path to the initial directory is searched. The search uses the First LINQ query,

which returns the first item in the collection that satisfies the specified condi-

tion. Because directory names are case insensitive, they are converted to up-

percase by the ToUpper method before comparing them.

4. The Expand method of the TreeNode class is intended for programmati-

cally expanding a tree node. When this method is called, the BeforeExpand

event does not occur, so you must first explicitly call the MakeChildNodes helper

method, which creates a set of child nodes for this node.

4. Notice that the InitialExpanding method expands the items in the tree, but

does not select them. This is due to the fact that the event of selecting a tree

node will be associated later (see Section 21.2) with the execution of additional

actions that can run for a long time. Therefore, the selection of a new node is

performed after exiting the InitialExpanding method (if the method call was suc-

cessful and did not return null).

21.2. View images from image files in the selected directory

Place a new split container on the Panel2 panel of the splitContainer1 control

(the added split container will be named splitContainer2). For each split container,

set the TabStop property to False.

Although the second split container is placed on one of the panels of the

first split container, visually, the form will contain three panels of the same

height and with splitters of the same width. You can distinguish panels by using

the upper part of the Properties window. Sequential selection of form panels

from left to right will indicate the following names at the top of the Properties

window: splitContainer1.Panel1, splitContainer2.Panel1, splitContainer2.Panel2. Note

that clicking on the splitter located between the two left panels will select the

splitContainer1 control and clicking on the splitter between the two right panels

will select the splitContainer2 control.

Place the ListBox control on the Panel1 panel of the splitContainer2 control

and the PictureBox control on the Panel2 panel of the splitContainer2 control (the

added controls will be named listBox1 and pictureBox1). Set the properties of the

added controls (see also Fig. 21.4).

Properties
listBox1: Dock = Fill, IntegralHeight = False

pictureBox1: Dock = Fill, SizeMode = Zoom, BorderStyle = Fixed3D

201

Figure: 21.4. Form1 view at the second stage of development

Add the declaration of the imageExts field to the beginning of the Form1

class declaration:

string [] imageExts = {".bmp", ".jpeg", ".jpg", ".png", ".gif",

 ".ico", ".wmf", ".emf"};

The imageExts array contains various image file extensions.

Define handlers for the AfterSelect event for the treeView1 control and the

SelectedIndexChanged event for the listBox1 control:

treeView1.AfterSelect and listBox1.SelectedIndexChanged handlers
private void treeView1_AfterSelect(object sender,

 TreeViewEventArgs e)

{

 listBox1.Items.Clear();

 string path = e.Node.Tag.ToString();

 if (!Directory.Exists(path))

 return;

 foreach (string file in Directory.GetFiles(path)

 .Select(e1 => Path.GetFileName(e1))

 .Where(e1 => imageExts.Contains(Path.GetExtension(e1)

 .ToLower()))

 .OrderBy(e1 => e1))

 listBox1.Items.Add(file);

}

private void listBox1_SelectedIndexChanged (object sender,

 EventArgs e)

{

 string name = listBox1.SelectedItem.ToString();

 Text = "Image Viewer -" + name;

 UseWaitCursor = true;

 try

202

 {

 pictureBox1.Image =

 new Bitmap(treeView1.SelectedNode.Tag + "\\" + name);

 Text += "(" + pictureBox1.Image.Width + "x"

 + pictureBox1.Image.Height + ")";

 }

 catch

 {

 pictureBox1.Image = null;

 Text += "(WRONG FORMAT)";

 }

 UseWaitCursor = false;

}

Result. When you select a directory in the directory tree, the file list dis-

plays the names of image files (with the .bmp, .jpeg, .jpg, .png, .gif, .ico, .wmf,

.emf extensions) located in the selected directory. File names are sorted alpha-

betically. See also Comment 1.

When you click on the file name (or when moving through the file list us-

ing the arrow keys) the pictureBox1 control in the right-hand panel displays an

image from the selected file. The image is scaled to fit the panel while maintain-

ing aspect ratio, and the full file name and image size (in pixels) are indicated in

the form title bar (see Fig. 21.5).

If the current directory does not contain image files or if the current image

file has an incorrect format, the viewing area remains empty and, in case of an

incorrect format, the error information (the (WRONG FORMAT) text) is dis-

played in the form title bar. Note that, for testing purposes, an empty file was

added to the Debug directory (see Fig. 21.6).

When an image is loading, the cursor appearance for the entire application

changes to a wait cursor; after loading is complete, the cursor appearance is re-

stored (working with cursors was discussed in detail earlier in the CURSORS

project, see Chapter 11). This feature is useful when loading very large images.

The width of the panels can be changed by dragging the splitters between

them (when you move the mouse cursor over these dividers, it becomes a dou-

ble-headed arrow). When you change the width of the form, the width of each of

the three panels changes proportionally. Pressing the Tab key allows you to tog-

gle between the directory tree and the file list. See also Comments 2–4.

Remark. Since, at the launching of the program, the selected directory is

the directory from which the exe-file is run (i. e., the bin\Debug subdirectory of

the directory with the IMGVIEW project), to speed up testing of the IMGVIEW

project, it is advisable to copy several graphic files of different types into the

bin\Debug subdirectory of the project directory.

203

Fig. 21.5. View of the running IMGVIEW application with the loaded image

Fig. 21.6. View of the IMGVIEW application when a file in wrong format is selected

Disadvantage 1. When the form is resized (and the width of its panels is

changed synchronously), the contents of the directory tree and the file list flicker

as a result of repeated redrawing.

Correction. For the splitContainer1 and splitContainer2 controls, set their

FixedPanel property to Panel1.

Result. Now changing the width of the form affects only the right-hand

panel containing the image; the width of panels with directory tree and file list

does not change. In such a situation, the flickering of the directory tree and file

list practically disappears. See also Comment 5.

Disadvantage 2. When changing the directory, the previously loaded im-

age remains in the right-hand panel. In addition, at the beginning of the program,

none of the images from the selected directory is displayed.

Correction. Add a statement to the beginning of the treeView1_AfterSelect
method

pictureBox1.Image = null;

Text = "Image Viewer";

and add a conditional statement at the end of the same method:

if (listBox1.Items.Count > 0)

204

 listBox1.SelectedIndex = 0;

Result. Now, when changing the directory, the first item is automatically

selected in the file list and its image is displayed in the right-hand panel. If the

directory does not contain image files, the right-hand panel is cleared. See also

Comment 6.

Comments

1. To get a list of all files from a given directory, we use the GetFiles meth-

od of the Directory class. Then we successively apply three LINQ queries to the

resulting set of file names: the Select query returns a set of file names without

the previous path, the Where query selects image file names with the required

extensions, the OrderBy query orders the names alphabetically. All obtained file

names are added to the Items collection of the listBox1 control.

2. By nesting split containers into each other, it is possible to provide an

arbitrarily complex configuration of panels with the possibility of flexible ad-

justment of their sizes. The problem when working with nested split containers

is their selection (for example, to set properties in the Properties window). If

the child panel is not selected, then you can select the split container by click-

ing on its splitter. If the child panel or the controls located on it are selected,

then it is easier to press the Esc key several times, sequentially going to the

parent controls of all levels (up to the form). Let us give an example related to

the current project. If we assume that the pictureBox1 control is currently select-

ed, then, by pressing the Esc key several times, we will sequentially select the

following controls:

 splitContainer2.Panel2;

 splitContainer2;

 splitContainer1.Panel2;

 splitContainer1;

 Form1.

In the case of a complex hierarchy of controls, the Document Outline

window is useful, which is displayed on the screen using the View | Other

Windows | Document Outline menu command. See Fig. 21.7 with the view of

this window for our project at the current stage of its development.

Fig. 21.7.The Document Outline window

205

3. We set the IntegralHeight property to False for the listBox1 control. This

property determines whether to display the top part of the last on-screen list

item if the entire item cannot be displayed on the screen. When set to True (the

default value for the ListBox control), the list displays only those items that are

fully visible on the screen. In our case, this will lead to the situation when the

listBox1 control will not be aligned to the bottom border of the form (an empty

space will be displayed between the bottom border of the listBox1 control and

the bottom border of the form). To prevent this, you just need to set the

IntegralHeight property to False.

4. The try block is used in the listBox1_SelectedIndexChanged handler in or-

der to correctly handle a possible situation when a file with an extension corre-

sponding to image files has an incorrect format and therefore cannot be dis-

played in the PictureBox control. In this situation, calling the constructor of the

Bitmap class throws an exception, which is immediately handled in the catch

section. The exception handling is that the PictureBox control becomes empty,

that is, does not contain an image.

5. The FixedPanel property is one of the properties of the split container that

allows flexible customization of the behavior of the panels associated with it.

Note also the Orientation property, which determines the orientation of the split-

ter and, accordingly, the location of the child panels of the split container. The

possible values of the Orientation property are Vertical (vertical splitter, Panel1

on the left, Panel2 on the right) and Horizontal (horizontal splitter, Panel1 on

top, Panel2 on the bottom). When describing other properties, we will use the

concept of the thickness of the split container and panel. When the split con-

tainer is oriented vertically, we mean the width of the control by its thickness,

and when it is oriented horizontally, we mean its height by its thickness.

Let us go back to the FixedPanel property. If it is equal to None (the default

value), then, when the container thickness changes, the thickness of its panels

changes proportionally. If the FixedPanel property is Panel1 or Panel2, then

the thickness of the specified panel does not change when the thickness of the

container changes.

The Panel1MinSize and Panel2MinSize properties (default 25) define the min-

imum thickness of the corresponding panel. Using the two paired properties

Panel1Collapsed and Panel2Collapsed, you can hide and restore the correspond-

ing panel by setting the property to True or False (the remaining panel will

take up the entire area of the container, even if it was previously hidden; there-

fore, you cannot hide both panels at once).

The position, width, and step of changing the splitter are determined by the

SplitterDistance, SplitterWidth and SplitterIncrement properties, respectively. By de-

fault, the width is 4 pixels and the step is 1 pixel. You can block the ability to

change the position of the splitter by the user by setting the IsSplitterFixed prop-

206

erty to True (while maintaining the ability to change the position of the splitter

programmatically).

It should be noted that the position of the splitter can be changed not only

by dragging it with the mouse, but also with the arrow keys, if you first move

the focus to the splitter using the Tab key. However, such a possibility is not

always useful. For example, if there are two panels with a splitter on a form,

the user usually expects the Tab key to allow him to switch between panels.

Therefore, in most programs, it is reasonably to disable focus on the splitter.

For this, it is enough to set the TabStop property of the split container to False.

To track user actions related to changing the position of the splitter, the

split container has two events: SplitterMoving, which occurs when an attempt is

made to change the position of the splitter, and SplitterMoved, which occurs

when its position is successfully changed. The SplitterMoving event, like all

events raised before the execution of an action, allows it to be canceled by set-

ting the e.Cancel value to true in the event handler (e is the second parameter of

the handler).

6. Of the two events associated with a change in the selection of a node in

the TreeView control (BeforeSelect and AfterSelect), we used the AfterSelect event,

since a new node has already been selected in the tree when it occurs. When

the BeforeSelect event occurs, the new node has not yet been selected, and alt-

hough it can be determined in the event handler using the e.Node property, this

information is not available to the listBox1_SelectedIndexChanged event handler.

21.3. Docking of controls and its features

In this section, we will place the ComboBox control at the bottom of panel 1

of the splitContainer2 control. When adding this control to the form, it is enough

to place it in the listBox1 control (which completely overlaps the panel 1 of the

splitContainer1 control) and then set the following properties for the added

comboBox1 control:

Properties
comboBox1: Dock = Bottom, DropDownStyle = DropDownList

Error. The new control is placed at the lower part of the panel 1 (that is, it

is “docked” to its bottom border), however, it is located above the listBox1 con-

trol overlapping its lower part (you can see this if you display a large set of im-

age files; as a result, a vertical scroll bar appears in the file list, and its lower

part will be hidden by the comboBox1 control).

Correction. Select the comboBox1 control and click on the Send to Back

button (this button is located on the right side of the Layout panel).

Result. Now the listBox1 control (with the Dock property equal Fill) occu-

pies the entire area of panel 1 of the split container, except for the lower part,

which is reserved for the comboBox1 control (see Fig. 21.8). We will add the

necessary functionality for the comboBox1 control in the next section.

207

Fig. 21.8. The final view of Form1

Comment
Using the Dock property, which is available for all visual controls, you can

easily arrange the relative positioning of controls in a form so that they occupy

the entire client area of the form and do not overlap each other even when the

form is resized. To do this, all controls, except one, must be docked to one of

the form borders (the Dock properties of these controls must have the values

Top, Bottom, Left, or Right depending on which form border they should be

docked to), and the remaining control must fill the area of the form not occu-

pied by the controls docked to the borders (the Dock property of this control

must be equal to Fill).

It is necessary to discuss the following question: if two controls are docked

to the same border, which one will be closer to this border? When using a form

designer, you can give the following answer (though, as we will see later, it

will not be entirely correct): the control placed earlier on the form will be clos-

er to the border. This rule corresponds to the developer’s intuition: indeed, the

previously added control “captures” the part of the form near the border and

will not “give” it to another control that appears later. It is important to empha-

size that the order in which values are assigned to the Dock properties (using

the Properties window) does not matter: if, for example, panel1 was placed on

the form earlier than panel2, then even if the Bottom value was first set for the

panel2.Dock property and then for the panel1.Dock property, panel1 will still be

located closer to the bottom border.

So, everything is determined by the order of placing the controls in the

form. But this order is closely related to the z-order of controls (in other words,

to the order of their placement in the Controls collection of the parent control).

We discussed the z-order features in detail in Section 9.1, Comment 4. In par-

ticular, we established that, if the panel1 control was placed on the form in de-

sign mode before panel2, then its z-coordinate (as well as the index in the Con-
trols collection) will have a greater value (for example, if the form contains on-

208

ly two of these controls, then panel1 will have index 1 and panel2 will have in-

dex 0). But this, in turn, means that the panel2 control will be the first item of

the Controls collection. Recall that, to add a control to the Controls collection, it

is enough to use its Add method. Thus, we come to another rule, which is no

longer quite intuitive: a control that was later added to the Controls collection of

the parent control (and, accordingly, has a greater index in it) will be closer to

the border of the parent control.

Now it should become clear the way we corrected the error noted in this

section: in order for the comboBox1 control to “capture” the bottom of the pan-

el, we had to send it to the end of the z-sequence by clicking the Send to Back

button (thereby, we set the greatest index for it in the Controls collection).

In conclusion, we make two remarks.

1) As we have seen, even if the controls are added to the form in an order

that does not correspond to the order of their docking, we can always correct

the position by changing their z-order using the Send to Back and Bring to

Front commands.

2) If visual controls are created and added to the form not in design mode,

but by programmatically, then, for the correct order of docking, you must fol-

low the extremely "unintuitive", although the simple rule “work from the cen-

ter”: first you need to add a control with the Dock property equal to Fill, then

the controls around it, and finally the controls that should be docked directly to

the border of the form.

21.4. Setting the image view mode

Add the following statements to the constructor of the Form1 class:

comboBox1.Items.Add(PictureBoxSizeMode.Zoom);

comboBox1.Items.Add(PictureBoxSizeMode.StretchImage);

comboBox1.Items.Add(PictureBoxSizeMode.Normal);

comboBox1.SelectedIndex = 0;

Define an event handler for the SelectedIndexChanged event for the

comboBox1 control:

comboBox1.SelectedIndexChanged handler
private void comboBox1_SelectedIndexChanged(object sender,

 EventArgs e)

{

 pictureBox1.SizeMode =

 (PictureBoxSizeMode)comboBox1.SelectedItem;

}

Result. Using the comboBox1 drop-down list, you can select three image

view modes: in the Zoom mode, the image is scaled while maintaining aspect

ratio as before; in StretchImage mode, the image is stretched to the entire right-

hand panel; in Normal mode, the image is displayed without scaling.

209

Disadvantage. When displaying large images without scaling, it is advisa-

ble to add scroll bars to view different parts of the image.

Correction. In the Properties window for the Panel2 object of the

SplitContainer2 control, set the AutoScroll property to True. In the constructor of

the Form1 class, change the statement
comboBox1.Items.Add(PictureBoxSizeMode.Normal);

in the following way:

comboBox1.Items.Add(PictureBoxSizeMode.AutoSize);

Add new statements to the comboBox1_SelectedIndexChanged method:

if (pictureBox1.SizeMode == PictureBoxSizeMode.AutoSize)

 pictureBox1.Dock = DockStyle.None;

else

 pictureBox1.Dock = DockStyle.Fill;

Result. The third mode is now called AutoSize; in this mode, scroll bars

appear on the panel when large images are displayed. Fig. 21.9 shows the

IMGVIEW application window in different image view modes.

Comments
1. When defining a set of items for the comboBox1 drop-down list, we used

the objects of the PictureBoxSizeMode enumeration, which defines various scal-

ing options for the PictureBox control. Due to this, we were able to directly as-

sign the value of the current list item to the SizeMode property in the

comboBox1_SelectedIndexChanged method (it was only required to perform the

appropriate type conversion). Note that string representations of PictureBoxSize-
Mode type are used as the text of the drop-down list items.

2. The SizeMode property is responsible for setting the relative position of

the PictureBox control and the image loaded into it, as well as for image scaling.

Its value options are Zoom, StretchImage, Normal, and AutoSize. There is

also a CenterImage option, which differs from the Normal option only in that

the image is placed in the center of the PictureBox control (whereas, in the

Normal mode, it is in the upper left corner of the control). In the Normal (and

CenterImage) mode, the picture is cropped if it exceeds the size of the control.

To correct this, we changed the Normal mode to the AutoSize mode, which

resizes the control to fit the loaded image (in this only case, the control is

resized to fit the image, in other scaling modes the image is resized to fit the

control).

To make the pictureBox1 control resizable in the case of the AutoSize mode,

we disable the Full docking mode for the pictureBox1 control. In addition, we

set the AutoScroll property of the panel containing the PictureBox control to

True (the default value is False). If AutoScroll is True, scroll bars appear on the

panel if it contains controls that are larger than the panel itself. Note that the

AutoScroll property is avaliable not only for split container panels, but also for

usual panels (the Panel control), as well as for the form.

210

Fig. 21.9. View of the IMGVIEW application in different image view modes

211

21.5. Saving information about the state of the program
in the Windows registry

At the beginning of the Form1.cs file, add the following directive:

using Microsoft.Win32;

Add a declaration of the new field to the Form1 class declaration:

string regKeyName = "Software\\WinFormsExamples\\IMGVIEW";

Define an event handler for the FormClosed event for Form1:

Form1.FormClosed handler
private void Form1_FormClosed(object sender,

 FormClosedEventArgs e)

{

 RegistryKey rk = null;

 try

 {

 rk = Registry.CurrentUser.CreateSubKey(regKeyName);

 if (rk == null)

 return;

 rk.SetValue("FormWidth", Width);

 rk.SetValue("FormHeight", Height);

 rk.SetValue("Split1", splitContainer1.SplitterDistance);

 rk.SetValue("Split2", splitContainer2.SplitterDistance);

 rk.SetValue("Zoom", comboBox1.SelectedIndex);

 rk.SetValue("Path", treeView1.SelectedNode.Tag.ToString());

 rk.SetValue("File", listBox1.SelectedIndex);

 }

 finally

 {

 if (rk != null)

 rk.Close ();

 }

}

Result. Now, when the program exits, information about its current state is

written to the Windows registry. In order to verify this, you should run the Reg-

istry Editor program. The easiest way to launch this program is by executing

the Run... command from the Windows Start menu and entering the text

regedit in the window that appears. In the registry editor, select the

HKEY_CURRENT_USER registry key (that is, a root section of the registry)

and the Software\WinFormsExamples\IMGVIEW registry subkey (that is,

a subsection) in it. As a result, the regstry values of the selected subkey will be

displayed in the right panel of the registry editor (each registry value has name

212

and data). The subkey should contain seven values (in addition to the Default

value, which is not used in our program) with the names File, FormHeight,

FormWidth, Path, Split1, Split2, Zoom. The data of the Path value is of string

type, the other data are integers. In Section 21.6, we will add a fragment to the

program that allows to read this data from the registry.

Comments

1. The Windows registry is a convenient centralized storage of data neces-

sary for the correct working of programs, in particular, to restore their settings

at the next launch. If for each computer user it is desirable to store his own set-

tings, then they should be placed in the HKEY_CURRENT_USER registry

root key. If the settings are to be the same for all users, then they should be

placed in the HKEY_LOCAL_MACHINE registry root key. In any case, in

the selected root key, you must create a subkey associated with a specific pro-

gram (usually this subkey is placed in the Software subkey of the selected root

key). The .NET library provides the Registry and RegistryKey classes defined in

the Microsoft.Win32 namespace to access registry data.

The Registry class lets you select one of the root registry keys and get an as-

sociated object of RegistryKey type. To retrieve standard root keys, there are

static read-only properties of the Registry class. The CurrentUser property corre-

sponds to the HKEY_CURRENT_USER root key, the LocalMachine property

corresponds to the HKEY_LOCAL_MACHINE root key.

Once you obtain an object of RegistryKey type using the Registry class, you

can use it to create new subkeys and open existing subkeys in read and/or write

modes. The CreateSubKey method opens a subkey in write mode; if this subkey

does not exist, then the method creates it. The OpenSubKey method opens an

existing subkey in read-only mode. In both methods, the full path to the re-

quired subkey must be specified as a string parameter. There is also an over-

loaded version of the OpenSubKey method that allows you to open an existing

subkey in read/write mode; to do this, you must specify the second, additional

parameter equal to true in the method. If the requested operation is successful,

both methods return an object of RegistryKey type associated with the open

subkey. If the operation fails, then either a null value is returned (for example, if

an attempt is made to open a missing subkey using the OpenSubKey method), or

an exception is raised (for example, if the program does not have sufficient

rights to access the specified subkey in the required mode). Any successfully

opened subkey must be closed using the Close method.

The SetValue method of the RegistryKey class allows you to add or change

values for an open subkey. It has two parameters: the name of the value and da-

ta associated with it (data can be of string type, integer type, or byte array

type). The method for obtaining data from the subkey values will be described

in Section 21.6.

213

2. To debug fragments of the program related to the registry, you must use

the Registry Editor program, since it allows you to view and edit the registry

contents. If you find out that a subkey or any of its values were created with er-

rors, you can easily delete them using the registry editor. If the program under

test is restarted while the registry editor is loaded, then, to update the infor-

mation in the registry editor window, just press the F5 key.

21.6. Restoring information from the Windows registry

Modify the Form1_Load method:
private void Form1_Load(object sender, EventArgs e)

{

 RegistryKey rk = null;

 string path = "";

 int fileIndex = 0;

 try

 {

 rk = Registry.CurrentUser.OpenSubKey(regKeyName);

 if (rk != null)

 {

 Width = (int)rk.GetValue("FormWidth", Width);

 Height = (int)rk.GetValue("FormHeight", Height);

 splitContainer1.SplitterDistance =

 (int)rk.GetValue("Split1",

 splitContainer1.SplitterDistance);

 splitContainer2.SplitterDistance =

 (int)rk.GetValue("Split2",

 splitContainer2.SplitterDistance);

 comboBox1.SelectedIndex = (int)rk.GetValue("Zoom",

 comboBox1.SelectedIndex);

 path = (string)rk.GetValue("Path", "");

 fileIndex = (int)rk.GetValue("File", 0);

 }

 }

 finally

 {

 if (rk != null)

 rk.Close();

 }

 if (!Directory.Exists(path))

 path = Directory.GetCurrentDirectory();

 var node = InitialExpanding(Directory.GetCurrentDirectory());

214

 var node = InitialExpanding(path);

 if (node != null)

 treeView1.SelectedNode = node;

 if (fileIndex >= 0 && fileIndex < listBox1.Items.Count)

 listBox1.SelectedIndex = fileIndex;

}

Result. When the program starts, the data from the Windows registry is

used to restore previously saved state of the program. If there is no data in the

registry, then the default settings are used. Since the state of the file and directo-

ry structure may have changed since the last time the data was saved in the reg-

istry, we check the existance of the directory with the name obtained from the

the Path registry value.

Disadvantage. If the form has been resized, it is not centered on screen on

the next launch. This is because the actions to center the form are performed be-

fore the Load event occurs, that is, when the form has its original size.

Correction. In the Form1_Load method, before the statement
if (!Directory.Exists(path))

 path = Directory.GetCurrentDirectory();

add the following statements:

Left = (Screen.PrimaryScreen.WorkingArea.Width - Width) / 2;

Top = (Screen.PrimaryScreen.WorkingArea.Height - Height) / 2;

Result. Centering now works correctly for any form size.

Comments

1. The GetValue method of the RegistryKey class is used to read the data

from the registry subkey values; in this case, it is enough to open the required

subkey for reading only. The most convenient version of the GetValue method

is with two parameters: the first parameter contains the registry value name, the

second contains the default value (the method returns a default value if the

specified registry value is not found in the registry subkey). The version of the

method with one parameter (the regisrty value name) is less convenient, be-

cause, in the absence of the required regisrty value, it returns null. The GetValue

method returns result of object type, so its return value must be explicitly cast to

the type of the required data (int or string).

2. Registry editor is especially useful when debugging a program fragments

responsible for reading data from the registry. With its help, you can delete

some values of a registry subkey and the subkey itself, as well as make changes

to the values, which allows you to test the program working in special situa-

tions.

3. To explicitly calculate the position of the form ensuring its centering, we

used the standard Screen class, which allows us to obtain various characteristics

of all screens associated with a computer. The PrimaryScreen property is used to

215

access the properties of the main screen, and the WorkingArea property returns

a part of the screen without the Windows taskbar).

There is another way to correct the noted disadvantage. You may read the

data from the registry in the form constructor. In this case, the information

from the registry about the new form size will be available when centering the

form.

216

22. MDI application: JPEGVIEW project

The JPEGVIEW project is a Multi-Document Interface (MDI) application.

We describe methods of interaction between the main and child forms and

standard actions on child forms (various types of placement of child forms on

the main form, displaying a list of child forms in the menu, closing all child

forms at the same time, etc.). We also discuss how to implement image scaling

modes and keyboard scrolling for child forms.

22.1. Opening and closing child forms in MDI application

After creating the JPEGVIEW project, place non-visual controls of

MenuStrip and OpenFileDialog type on Form1 (these controls will be named

menuStrip1 and openFileDialog1; they will be placed in the non-visual control area

under the form image; in addition, the menu associated with the menuStrip1 con-

trol will be indicated at the top of the form).

Using the menu designer (see Section 12.1), create a first-level menu item

with the text &File in the menuStrip1 menu and use the Properties window to

change the name of this item (that is, the Name property) to file1. In the drop-

down menu associated with the File item, create a menu item with the text

&Open, then an item with the text - (dash; this item will be converted to a hori-

zontal separator), then an item with the text E&xit. Set the properties of Form1,

its controls, and menu items added to the menuStrip1 menu (see also Fig. 22.1).

Properties (Form1)
Form1: Text = JPEG View, IsMdiContainer = True,

 StartPosition = CenterScreen

openFileDialog1: Title = Open image file,

 Filter = JPEG Images|*.jpg; *.jpeg

Open (the File group): Name = open1

Exit (the File group): Name = exit1

Add a new form to the project (it will be named Form2) and place the

menuStrip1 menu control and the pictureBox1 container control for images on

Form2. In the menuStrip1 menu of Form2, create a first-level menu item with the

text &File and the name file1. In the drop-down menu associated with the File

item, create two menu items with the text &Open and &Close, then an item

with the text - (dash), then an item with the text E&xit. Set the properties of

Form2, its controls, and menu items added to the menuStrip1 menu (see also

Fig. 22.2).

Properties (Form2)
Form2: Text = empty string, ShowInTaskbar = False,

217

 AutoScroll = True

pictureBox1: SizeMode = AutoSize, Location = 0; 0,

 Modifiers = Internal

File: MergeAction = Replace

Open (the File group): Name = open1

Close (the File group): Name = close1

Exit (the File group): Name = exit1

Fig. 22.1. Form1 view at the initial stage of development

Fig. 22.2. Form2 view at the initial stage of development

Define event handlers for the Click event for the open1 and exit1 menu items

of Form1:
open1.Click and exit1.Click handlers (Form1 menu items)
internal void open1_Click(object sender, EventArgs e)

// access modifier changed to internal

{

 openFileDialog1.FileName = "";

218

 if (openFileDialog1.ShowDialog() == DialogResult.OK)

 {

 // create a child form and customize it

 Form2 f = new Form2();

 string n = openFileDialog1.FileName;

 Image i = Image.FromFile(n);

 f.pictureBox1.Image = i;

 f.Text = string.Format("{0} ({1}x{2})",

 System.IO.Path.GetFileNameWithoutExtension(n),

 i.Width, i.Height);

 f.MdiParent = this;

 f.Show();

 }

}

private void exit1_Click(object sender, EventArgs e)

{

 Close();

}

Define event handlers for the Click event for the open1, close1, and exit1

menu items of Form2:
open1.Click, close1.Click and exit1.Click handlers (Form2 menu items)
private void open1_Click(object sender, EventArgs e)

{

 (MdiParent as Form1).open1_Click(this, null);

}

private void close1_Click(object sender, EventArgs e)

{

 // close the child form

 Close();

}

private void exit1_Click(object sender, EventArgs e)

{

 // close the main form

 MdiParent.Close();

}

Result. Using the Open menu item in the main form JPEG View, you can

load image files in JPEG format. Each of the uploaded files is displayed in

a separate window (a child window or a child form), with the file name and im-

age size in pixels (for example, 200x350) indicated in the title bar of the child

form. The initial size and position of the child form is determined by default

(since its StartPosition property is equal to WindowsDefaultLocation). If the child

219

form is not large enough to display the entire image, then scroll bars appear in it.

When the child form is maximized, its title is added to the title of the main form.

When a child form is minimized, its title bar is placed at the bottom of the main

form. If at least one child form is open, the additional Close command appears

in the main form menu, which allows you to close the active child form. If all

child forms are closed, the initial main form menu is restored.

To close the active child-form, you can use the Ctrl+F4 key combination. In

addition, there are key combinations for activating the next and previous child

forms: these are, respectively, Ctrl+F6 and Ctrl+Shift+F6. You can also switch

between open child forms using the arrow keys. All these shortcut keys are pro-

cessed automatically in the MDI application. See also Comments 1–4.

Disadvantage. If the width of the child form exceeds the size of the picture,

then a menu bar is visible on the top of the child form.

Correction. For the menuStrip1 control of Form2, set the Visible property to

False.

Result. Now the menu bar on child forms is not displayed. This does not

affect the appearance of menu items added from this menu to the menu of the

main form.

Comments
1. To access the main form, the MdiParent property of the child form is pro-

vided. Any form with a non-empty MdiParent property value is considered

a child form. To define a form as the main form of an MDI application, it is

enough to set its MdiContainer property to True.

2. The GetFileNameWithoutExtension method of the Path class from the Sys-
tem.IO namespace extracts the file name without the path and extension from

the full file name. Since there is no using directives for this namespace in the

Form1.cs file, we had to use the fully qualified class name: System.IO.Path.

3. Since the InitialDirectory property is not explicitly set for the openFile-
Dialog1 control, the first time the program is started, its working directory will

be selected as the initial directory (in our case, the bin\Debug subdirectory of

the directory containing the JPEGVIEW project). If we select a file from an-

other directory using the openFileDialog1 dialog box, then the next time the dia-

log box opens, this directory will be shown as the initial one. Information about

the last used directory is automatically saved in a special section of the Win-

dows registry, and this directory will be shown as the initial one when the pro-

gram is started again. Such behavior of the program is quite reasonable and

does not require any effort from the programmer to implement it. You can

compare this approach with an explicit setting of the InitialDirectory property in

the TEXTEDIT1 project (see Section 12.2).

4. A child form has no menu. When a child form is activated, the contents

of its menuStrip1 control replaces the first-level menu items of the main form

with the same names. In our case, the File menu item is replaced. The method

220

of replacement is determined by the MergeAction property of the child form

menu item: in our case, it is equal to Replace, so the File menu item of the

main form is replaced with the corresponding item of the child form. It should

be noted that the AllowMerge property must be equal to True (this is the default

value) for menuStrip1 controls of both main and child forms to be able to merge

menus.

22.2. Standard actions with child forms

Create a new first-level menu item with the text &Window in the

menuStrip1 menu of Form1 and use the Properties window to change the name of

this item (that is, the Name property) to window1. In the drop-down menu associ-

ated with the Window item, create menu items with the text &HTile, &VTile,

&Cascade, &Arrange Icons and set the Name properties of these items to

hTile1, vTile1, cascade1, arrangeIcons1, respectively (see Fig. 22.3).

Fig. 22.3. Form1 view at an second stage of development

Add new statements to the constructor of the Form1 class:
public Form1()

{

 InitializeComponent();

 hTile1.Tag = MdiLayout.TileHorizontal;

 vTile1.Tag = MdiLayout.TileVertical;

 cascade1.Tag = MdiLayout.Cascade;

 arrangeIcons1.Tag = MdiLayout.ArrangeIcons;

}

Define the Click event handler for the hTile1 menu item, then connect the

created handler to the Click event of the vTile2, cascade1, and arrangeIcons1 menu

items.

hTile1.Click handler
private void hTile1_Click(object sender, EventArgs e)

{

 LayoutMdi((MdiLayout)(sender as ToolStripMenuItem).Tag);

}

221

Result. Using the commands of the Window group menu, you can perform

standard actions on child forms.

 HTile and VTile. All child forms are arranged with no overlapping and

so that they cover the entire client area of the main form. These com-

mands differ in the way child forms are positioned: HTile places forms

from top to bottom (stretching them horizontally), VTile places forms

from left to right (stretching them vertically). Sometimes these com-

mands work the same way (for example, for four or five child forms).

 Cascade. All child forms are arranged so that the title bars of all forms

are visible on the screen. A unified size is set for all child forms; this

size depends on the current size of the main form.

 Arrange Icons. All minimized child forms are located near the bottom

border of the main form.

See also Comments 1–2.

Disadvantage. In the absence of child forms, the commands of the Win-

dow menu group lose their meaning, but are still available in the menu.

Correction. For the window1 menu item of Form1, set the value of the Modi-
fiers property to Internal and the value of the Visible property to False.

In the open1_Click method of Form1, before the statement
f.Show();

insert a new statement:

window1.Visible = true;

Define the FormClosed handler for Form2:

Form2.FormClosed handler
private void Form2_FormClosed(object sender,

 FormClosedEventArgs e)

{

 if (MdiParent.MdiChildren.Length == 1)

 // there is only one child-form left,

 // which is currently being closed

 (MdiParent as Form1).window1.Visible = false;

}

Result. The Window menu item is displayed only if there is at least one

open child form. See also Comments 3–4.

Comments
1. All actions on child forms are implemented in one method named

LayoutMdi of the Form class; the action required is determined by its single pa-

rameter of the MdiLayout enumerated type. To make it possible to use single

hTile1_Click handler for all menu items in the Window group, we assign the

corresponding element of the MdiLayout enumeration to the Tag property of

each menu item.

222

2. The hTile1_Click handler twice performs a type conversion: the first time

for the sender parameter and the second time for the Tag property. In the first

case, the as operator is used; in the second case, the (type) operator is used. The

as operator can only be used to convert reference data types (for example, con-

trols); this operator cannot be used for enumerated types and numeric data

types. The (type) operator can be used to convert any data types, but it is less

convenient to use for controls than the as operator. This is due to the fact that

the operators of type conversion have a lower priority than the dot operator “.”

of access to a member of an object. For example, if we want to convert the

sender parameter to the ToolStripMenuItem type and then use its Tag property,

then the expression (ToolStripMenuItem)sender.Tag will be erroneous because it

means that the sender.Tag property should be converted to the ToolStripMenuItem

type. The ((ToolStripMenuItem) sender).Tag expression is correct, but looks worse

than (sender as ToolStripMenuItem).Tag. The speed of execution of these expres-

sions is practically the same. Recall that, when these operators are applied to

reference data, the only difference between the (type) operator and the as opera-

tor is that, if the specified conversion is impossible, the (type) operator throws

an exception of InvalidCastException type, whereas the as operator simply re-

turns null.
3. The Form2_FormClosed method uses the MdiChildren property of Form[]

type. This property contains all currently open child forms. In this case, we

were only interested in the number of these forms, which can be obtained using

the Length property of the MdiChildren array.

4. Notice that the first time we access the MdiParent object in the

Form2_FormClosed method, we do not need to convert it to the Form1 type, be-

cause the Form class already has the MdiChildren property. When accessing the

window1 menu item, which is a field of the Form1 class (and is absent in the

Form class), the conversion of MdiParent to the Form1 type is required. Note also

that, to be able to access the window1 field of Form1 from another class (name-

ly, Form2), we need to change its Modifiers property to Internal.

22.3. Adding a list of open child forms to the menu

For the menuStrip1 control of Form1, set the value of the MdiWindowListItem

property to window1.

Result. A list of all open child forms is now displayed in the Window

menu group; a check mark is displayed near the active child form. By clicking

on an item from this list, you can activate the corresponding child form. To se-

lect an item from the list, you can also press the key corresponding to its ordinal

number (from 1 to 9). If more than 9 child forms are open, the More Win-

dows... menu item is displayed below the item corresponding to the 9th child

form. By selecting it, you can display an auxiliary Select Window dialog box

with a list of all open child forms.

223

22.4. Closing all child forms at the same time

Add a new item to the File menu of Form2 with the text Close &All. This

item must be added after the Close item; to do this, select the separator below

the Close item, press the right mouse button, and select the Insert | MenuItem

command from the context menu that appears (you can also do it differently:

create a Close All menu item at the end of the File group and then drag it with

the mouse to a new location). Set the Name property of the newly created menu

item to closeAll1 and define the Click event handler for this menu item:

closeAll1.Click handler
private void closeAll1_Click(object sender, EventArgs e)

{

 foreach (Form f in MdiParent.MdiChildren)

 f.Close();

}

Result. When the Close All command is executed, all child forms are

closed.

Remark. The Close All command is included in the Form2 menu because it

should only be available if there are open child forms in the application.

22.5. Image scaling

Add a new item with the text &Zoom to the File menu of Form2. This item

must be added after the Close All item using one of the methods described at the

beginning of Section 22.4. Set the Name property of the newly created menu

item to zoom1, set the CheckOnClick property to True, and define the Checked-
Changed event handler for the menu item:

zoom1.CheckedChanged handler
private void zoom1_CheckedChanged(object sender, EventArgs e)

{

 if (zoom1.Checked)

 {

 pictureBox1.Dock = DockStyle.Fill;

 pictureBox1.SizeMode = PictureBoxSizeMode.Zoom;

 }

 else

 {

 pictureBox1.Dock = DockStyle.None;

 pictureBox1.SizeMode = PictureBoxSizeMode.AutoSize;

 }

}

Result. Images in the child forms can be scaled to fit the current size of the

child form (while maintaining the aspect ratio of the image). To enable/disable

224

the scaling mode, the Zoom checkbox-like menu item is provided. If the zoom

mode is enabled, a check mark is displayed near this menu item. When the zoom

mode is disabled, the original image size is set; in this case, scroll bars may ap-

pear on the child form. Each child form sets the zoom mode independently; the

state of the Zoom menu item corresponds to the zoom mode for the active child

form. See also Comment 2 in Section 21.4.

22.6. Automatic resizing of child forms

Add two new items to the File menu of Form2 with the text &Resize and

R&esize All. New items must be added after the Zoom item using one of the

methods described at the beginning of Section 22.4. Set the Name properties of

the created menu items to resize1 and resizeAll1, respectively. The final view of

the File group menu for Form2 is shown in Fig. 22.4.

Fig. 22.4. The final view of Form2

Define event handlers for the Click event for the new menu items:

resize1.Click and resizeAll1.Click handlers
private void resize1_Click(object sender, EventArgs e)

{

 Size sz = ClientSize;

 if (zoom1.Checked)

 {

 int iw = pictureBox1.Image.Width,

 ih = pictureBox1.Image.Height,

 cw = ClientSize.Width,

 ch = ClientSize.Height;

 double x = cw / (double)iw,

 y = ch / (double)ih;

 if (x < y)

 sz.Height = (int)(x * ih);

225

 else

 sz.Width = (int)(y * iw);

 }

 else

 sz = pictureBox1.Size;

 ClientSize = sz;

}

private void resizeAll1_Click(object sender, EventArgs e)

{

 MdiParent.LayoutMdi(MdiLayout.Cascade);

 foreach (Form f in MdiParent.MdiChildren)

 (f as Form2).resize1_Click(f, null);

}

Result. The Resize command sets the size of the active child form equal to

the current size of the image it contains. The Resize All command resizes and

cascades all child forms.

Remark. Calling the LayoutMdi method that cascades child forms should be

done before sizing, because the LayoutMdi method itself resizes the child forms.

Comment
If the zoom mode is disabled, then setting the size of the form is trivial: you

just need to set the size of its client area equal to the size of the pictureBox1 con-

trol. You cannot do this in the zoom mode, because the size of the pictureBox1

control is not equal to the size of the scaled image. Moreover, it is impossible

to determine what part of a control occupies an image in zoom mode. At the

same time, in the zoom mode, it is sufficient to correct the size of the form in

only one dimension (in width or height). To determine which dimension and by

what amount to adjust, the proportions of the original (unscaled) image and the

client area of the form are compared.

22.7. Additional control tools

Place a toolbar on Form1, that is, a control of ToolStrip type (this control will

be named toolStrip1). The toolbar will automatically dock to the top border of the

form and will be positioned below the menuStrip1menu.

Proceeding in the same way as in Section 15.1, add four ToolStripButton con-

trols to the toolStrip1 toolbar, change their names (that is, Name properties) to the

following: open2, close2, resize2, zoom2, and set the Text properties to Open,

Close, Resize, and Zoom, respectively. For all four buttons, set the DisplayStyle

property to Text, AutoSize to False, and Size.Width to 50 (the last two settings are

needed to set the buttons to the same width, since by default the width of the

buttons is determined by the size of their caption). The resulting toolbar is

shown in Fig. 22.5.

226

Fig. 22.5. The final view of Form1

Change the access modifiers for some members of Form2: for the zoom1

menu item, set the Modifiers property to Internal; for the zoom1_CheckedChanged

and resize1_Click methods, replace the private modifier with internal in their head-

ers.

Return to Form1 and connect the Click event of the open2 button to the exist-

ing open1_Click handler, and define the Click event handlers for the close2,

resize2, and zoom2 shortcut buttons as follows:

close2.Click, resize2.Click, zoom2.Click handlers
private void close2_Click(object sender, EventArgs e)

{

 ActiveMdiChild.Close();

}

private void resize2_Click(object sender, EventArgs e)

{

 (ActiveMdiChild as Form2).resize1_Click(this, null);

}

private void zoom2_Click(object sender, EventArgs e)

{

 ToolStripMenuItem mi = (ActiveMdiChild as Form2).zoom1;

 mi.Checked = !mi.Checked;

}

Result. The Open shortcut button duplicates the menu command of the

same name. The Close and Resize buttons close and resize the active child form;

the Zoom shortcut button toggles image scaling on and off in the active child

form.

Remark. When implementing actions on clicking the Close, Resize, and

Zoom buttons, the ActiveMdiChild property of the main form is used, which re-

turns the active child form.

227

Error. Clicking the Close, Resize, or Zoom buttons with no child forms

throws a NullReferenceException (because the ActiveMDIChild property is null in this

case).

Correction. For the close2, resize2, and zoom2 buttons, set the Modifiers

property to Internal, the Enabled property to False.

Add new statement to the open1_Click method of Form1 before the statement

f.Show():
close2.Enabled = resize2.Enabled = zoom2.Enabled = true;

Change the Form2_FormClosed method of Form2:
private void Form2_FormClosed(object sender,

 FormClosedEventArgs e)

{

 Form1 f = MdiParent as Form1;

 if (MdiParent.MdiChildren.Length == 1)

 (MdiParent as Form1).window1.Visible = false;

 f.window1.Visible = f.close2.Enabled = f.resize2.Enabled =

 f.zoom2.Enabled = false;

}

Result. If the main form contains no child forms, then the Close, Resize,

and Zoom buttons are unavailable.

Disadvantage 1. When you hover the mouse cursor over any shortcut but-

ton, a tooltip appears next to it duplicating the text on the button.

Correction. In our case, there is no need to display tooltips, since the but-

tons themselves contain text that explains their purpose. Therefore, we may dis-

able the display of tooltips for the entire toolbar by setting the ShowItemToolTips

property of the toolStrip1 control to False (see also Comment 1).

Disadvantage 2. Unlike the Zoom menu item, the view of the Zoom

shortcut button does not allow to determine whether the active child form is in

zoom mode.

Correction. Define an Enter event handler for Form2:

Form2.Enter handler
private void Form2_Enter(object sender, EventArgs e)

{

 (MdiParent as Form1).zoom2.Checked = zoom1.Checked;

}

Add the following statement to the zoom1_CheckedChanged method:

(MdiParent as Form1).zoom2.Checked = zoom1.Checked;

Change the last statement in the Form2_FormClosed method as follows:
f.window1.Visible = f.close2.Enabled = f.resize2.Enabled =

 f.zoom2.Enabled = f.zoom2.Checked = false;

228

Remark. The change in the Form2_FormClosed method ensures that an in-

accessible Zoom button will never be in the pressed state.

Result. Now the Zoom shortcut button is in pressed state if the zoom mode

is set for the active child form. The Zoom button changes state in the following

situations (see also Comment 2):

 when clicking this button;

 when executing the Zoom menu command;

 when switching to a child form with the other zoom mode.

Comments

1. If you want to disable the tooltip for a particular ToolStrip button, set the

AutoToolTip property to False for this item and check that its ToolTipText proper-

ty is empty. Note that, if AutoToolTip is True (which is the default value for the

ToolStripButton control), then the ToolTipText property always has the same value

as the Text property.

2. Note that the zoom2 button itself does not change its state when clicked;

it only changes the state of the zoom1 menu item, but this change calls the

zoom1_CheckedChanged handler, which changes the state of the button. This is

the simplest way of interaction between a button and a menu item, in which the

state of the button can change both when you click on it and when the associat-

ed menu command is executed.

22.8. Scrolling the image using the keyboard

Define an event handler for the KeyDown event for Form2:

Form2.KeyDown handler
private void Form2_KeyDown(object sender, KeyEventArgs e)

{

 if (e.Modifiers != Keys.Control)

 return;

 Point p = AutoScrollPosition;

 Size s = pictureBox1.Size;

 p.X = -p.X;

 p.Y = -p.Y;

 switch (e.KeyCode)

 {

 case Keys.Up:

 p -= new Size(0, 10); break;

 case Keys.Down:

 p += new Size(0, 10); break;

 case Keys.Left:

 p -= new Size(10, 0); break;

 case Keys.Right:

229

 p += new Size(10, 0); break;

 case Keys.Home:

 p = Point.Empty; break;

 case Keys.PageDown:

 p = new Point(s); break;

 case Keys.End:

 p = new Point(0, s.Height); break;

 case Keys.PageUp:

 p = new Point(s.Width, 0); break;

 }

 AutoScrollPosition = p;

}

Result. Image scrolling (if the zoom mode is disabled and the child form

contains only part of the image) can be performed not only with the scroll bars,

but also using the keyboard while holding down the Ctrl key: the arrow keys

provide scrolling in the specified direction, and the keys Home, End, PgUp, and

PgDn provide movement to one of the corners of the image (to the upper left,

lower left, upper right and lower right, respectively). The need to use the Ctrl

key is explained by the fact that ordinary arrow keys are already reserved in the

MDI application for switching between child forms (see Section 22.1).

Let us give an example of a running program (Fig. 22.6). The program

window contains two child forms with the same image. In the left-hand (active)

form, the zoom mode is enabled, the right-hand form has scroll bars.

Fig. 22.6. View of the running JPEGVIEW application

230

Comment
The AutoScrollPosition property of a form (and of any visual control that is

a descendant of the ScrollableControl class, for example, Panel) allows you to

programmatically control the scrolling of its contents.

This property, like the SelectedText property of the TextBox control (see

Comment 2 in Section 8.1), belongs to a group of properties that do not behave

quite naturally: if you set the AutoScrollPosition property to the value of some

object p of Point type with positive fields X and Y (which are the positions of

the scroll bars) and then read the new value of this property, you get an object

of Point type with negative fields X and Y (more precisely, the field values will

be opposite of p.X and p.Y). Therefore, for our program to work properly, we

must use the p.X = –p.X and p.Y = –p.Y statements at the beginning of the

Form2_KeyDown method.

231

23. Splash screen application: TRIGFUNC project

The TRIGFUNC project applies the DataGridView control to show multicol-

umn list of data. It also describes techniques related to processing command line

arguments, displaying a splash window with special properties, and early termi-

nation of the program. It uses the Sleep method of the Thread class, the DoEvents

method of the Application class, and the ProgressBar control.

23.1. Creating a table of trigonometric function values

After creating the TRIGFUNC project, place the DataGridView table control

on Form1 (this control will be named dataGridView1) and set the properties of the

form and the added control:

Properties
Form1: Text = Trigonometric Functions,

 StartPosition = CenterScreen

dataGridView1: Dock = Fill, AllowUserToResizeColumns = False,

 AllowUserToResizeRows = False, AutoSizeColumnsMode = Fill,

 RowHeadersVisible = False, ReadOnly = True

In addition to setting the properties of the dataGridView1 table, you must set

the properties of its columns. To do this, select the Columns property in the

Properties window of the dataGridView1 control and click the ellipsis button

near this property. The Edit Columns dialog box appears allowing you to create

table columns, define their order, and set their properties. Click the Add… but-

ton in this window; in the Add Column window that appears, type the header of

the first column in the Header text box: x (no other settings need to be

changed), and click the Add button. An image of the created column will appear

on the left-hand side of the Edit Columns window, and a table that allows you

to set column’s properties will appear on the right-hand side (the structure of

this table is similar to the structure of the Property window). Add four more

columns to the dataGridView1 table using similar actions and specifying the fol-

lowing headers for them: Sin(x * pi), Cos(x * pi), Tan(x * pi), Cot(x * pi).

Then close the Edit Columns window by clicking the OK button. As a result,

the dataGridView1 control will display the headers of the created columns (see

Fig. 23.1). See also Comments 1–2.

232

Fig. 23.1. Form1 view at the initial stage of development

Define a handler for the Load event of Form1:

Form1.Load handler
private void Form1_Load(object sender, EventArgs e)

{

 int n = 7, nMax = 100001;

 string[] args = Environment.GetCommandLineArgs();

 if (args.Length > 1)

 try

 {

 int n0 = int.Parse(args[1]);

 if (n0 < 2 || n0 > nMax)

 throw new Exception();

 else

 n = n0;

 }

 catch

 {

 string s = string.Format("Invalid parameter: {0}\n" +

 "Valid values are from 2 to {1}", args[1], nMax);

 MessageBox.Show(s, "Error", MessageBoxButtons.OK,

 MessageBoxIcon.Error);

 Close();

 return;

 }

 double step = 1.0 / (n - 1);

 // reduce the width of the first column:

233

 dataGridView1.Columns[0].Width /= 2;

 // determine the number of rows:

 dataGridView1.RowCount = n;

 for (int i = 0; i < n; i++)

 {

 double x = i * step,

 sx = Math.Sin(Math.PI * x),

 cx = Math.Cos(Math.PI * x);

 dataGridView1[0, i].Value = x.ToString("f5");

 dataGridView1[1, i].Value = sx.ToString();

 dataGridView1[2, i].Value = cx.ToString();

 dataGridView1[3, i].Value = (sx / cx).ToString();

 dataGridView1[4, i].Value = (cx / sx).ToString();

 }

}

Result. The program fills the dataGridView1 table with the values of trigo-

nometric functions with arguments from 0 to radians on a grid of n equally

spaced points. The point number n can be specified as a command line argu-

ment; valid values are from 2 to 100001. When starting the program from Visual

Studio, you can specify the parameters in the Command line arguments text

box of the Debug settings section in the project properties window (recall that

this window is called by the Project | <Project name> Properties menu com-

mand). If the parameter is specified incorrectly, an error message is displayed

and the program exits immediately. If the parameter is not specified, then the

number of points is assumed to be 7. See also Comments 3–8.

Comments
1. Note that, when adding a new column, you can specify its type; this type

allows you to determine which type will be used by default for all cells of

a given column. In addition to the text displayed on the column header

(HeaderText), you can specify the column name (Name), which is an identifi-

er similar to the names of the controls placed on the form (by default, the

names Column1, Column2, etc. are used). Finally, when you create a new col-

umn, you can immediately define three of its boolean properties: Visible (de-

fault value True), ReadOnly, and Frozen (default value False). Only the last

property needs explanation: if Frozen is True, then this column and all the col-

umns preceding it are “frozen”, that is, they stop moving on the screen when

scrolling horizontally in the DataGridView table. All of these properties, as well

as a number of others, can be defined after creating a column using the table of

properties in the Edit Columns window.

2. It is possible to define columns of the DataGridView table and set their

properties without visual tools. The easiest way to do this is to use the Add

234

method of the Columns property of the DataGridView control. This method has

two versions: the first version has two string parameters columnName and

headerText, this version allows you to create a column with text data (that is,

a column of DataGridViewTextBoxColumn type); the second version has a param-

eter of DataGridViewColumn type, this parameter can be a column object of any

possible type. The Add method returns the index of the created column. In our

case, taking into account that all columns are of DataGridViewTextBoxColumn

type and their names will not be used in the future, we could simply put the fol-

lowing five statements in the constructor of the Form1 class (instead of the

steps described above for setting columns):
dataGridView1.Columns.Add("", "x");

dataGridView1.Columns.Add("", "Sin(x * pi)");

dataGridView1.Columns.Add("", "Cos(x * pi)");

dataGridView1.Columns.Add("", "Tan(x * pi)");

dataGridView1.Columns.Add("", "Cot(x * pi)");

3. To access the command line arguments, the GetCommandLineArgs method

of the Environment class was used, which returns a string array. The first ele-

ment of this array (with index 0) contains the full name of the application exe-

cutable file. Starting with the next element, the array contains command line

arguments.

4. In our case, the command line argument may be invalid for two reasons:

firstly, it may be a string that cannot be converted to an integer; secondly, even

if such a conversion is possible, the resulting number may be out of range. In

order to perform error handling in one place in the program, we implement this

error handling in the catch clause of the try block containing statement that

converts the command line argument to an integer. If such a conversion fails,

an exception is raised and the catch clause is immediately activated. If the con-

version is successful, but the number is out of range, then, to activate the catch

section, the program explicitly throws an exception using the throw operator

(the type of the exception does not matter in this case, so an exception of Ex-
ception type is thrown). For details on handling exceptions, see Chapter 3.

5. For immediate termination of the program, we call the Close method of

the form. Note that, even after calling the Close method, the current method

will run to the end. Therefore, after calling Close, you must immediately exit

the current method using the return statement.

6. Due to the Fill value of the AutoSizeColumnsMode property of the

dataGridView1 control, the columns “stretch” to the width of the control. By de-

fault, the width of all columns is the same, but you can change it for any col-

umn. For example, in our program, the width of the first column has been

halved in the Form1_Load method.

7. When performing calculations with double type, you do not have to wor-

ry about possible overflow. In particular, when calculating the value of the

235

function Cot at zero, no error will occur and the value infinity (or бесконеч-

ность) will be displayed in the corresponding cell of the table. See also Com-

ment 2 in Section 3.1.

8. When converting the obtained function values to their string representa-

tion by means of the ToString method, the default numeric format (the general

format) is used, in which the shortest possible representation of the given num-

ber is selected. Any other formatting option must be explicitly specified as

a parameter to the ToString method. For example, for the x column, the program

uses the f5 format that is a format with a fixed number of fractional digits (in

this case, with five fractional digits).

23.2. Displaying the splash window when loading the program

Add a new form to the project (it will automatically be named Form2) and

place label1 on Form2. Set the properties of Form2 and label1. To set the specified

properties (Name, Size and Bold) of the Font property of label1, it is convenient to

display the Font dialog box by clicking the ellipsis button near the Font
property in the Properties window. Using the Font window, you can configure

all the font properties and, in addition, you can view a sample font with the se-

lected settings.

Properties
Form2: Text = empty string, ControlBox = False,

 FormBorderStyle = FixedSingle, Opacity = 80%,

 ShowInTaskbar = False, StartPosition = CenterScreen,

 UseWaitCursor = True

label1: Text = Trigonometric Functions,

 AutoSize = False, Dock = Fill, TextAlign = MiddleCenter,

 Font.Name = Times New Roman, Font.Size = 32, Font.Bold = True

After setting the Font property of the label1 control, resize the Form2 so that

the label text is placed on two lines (see Fig. 23.2).

Fig. 23.2. Form2 view at the initial stage of development

236

Remark. Recall that, to select a form in a situation when one of its controls

is selected, you can just press the Esc key. Another quick way to select a form

(clicking on its title bar) is inapplicable in this case, because, due to the settings

made earlier, Form2 has no title bar.

Add a new field to the beginning of the Form1 class description in the

Form1.cs file:

private Form2 form2 = new Form2();

Change the constructor for the Form1 class as follows:
public Form1()

{

 InitializeComponent();

 AddOwnedForm(form2);

 form2.Show();

 Application.DoEvents();

}

Add a new statement to the Form1_Load method:

form2.Hide();

Result. While loading the Form1 main window and filling the dataGridView1

table with data, a Form2 splash window is displayed on the screen indicating that

the program is currently performing initializing actions. The splash window has

no title and is semi-transparent; it cannot be moved around the screen. On the

splash window, the mouse cursor changes to an hourglass. When the main win-

dow is displayed, the splash window disappears.

Disadvantage. If the amount of calculations required to fill the table is

small (for example, when using the default number of points n = 7), then the

splash window cannot be viewed due to the short display time.

Correction. In the Form1_Load method, before the previously added state-

ment form2.Hide(); insert a new statement:

System.Threading.Thread.Sleep(1000);

Result. After the completion of the initializing actions, the program pauses

for 1 second, during which the splash window remains on the screen.

Comments

1. The Opacity property of the Form class is responsible for the transparency

mode of the form. By default, it is 100%, which corresponds to the full opacity

mode. Partial transparency mode is convenient for dialog windows if, when

they are displayed on the screen, it is desirable to see the text of the main win-

dow located under them (note that such dialog windows are used in the Visual

Studio environment when displaying exception messages). In our case, we used

a semi-transparent splash window just to give it a more original look.

2. In the absence of the Application.DoEvents() statement in the Form1 con-

structor, an empty rectangular area would be displayed instead of a splash

window. Calling the DoEvents method of the Application class provides immedi-

237

ate handling of all events that have occurred up to that point, in particular,

events related to the redrawing of controls on the screen. More precisely, the

DoEvents method provides processing of all Windows messages currently con-

tained in the message queue for this application (recall that, in .NET applica-

tions, Windows messages are converted to events for certain controls).

3. To suspend program execution for the specified number of milliseconds,

we use the Sleep method of the Thread class from the System.Threading

namespace.

23.3. Using the splash window as an information window

Place button1 on Form2 and set the properties of Form2 and the added control

(see also Fig. 23.3).

Properties
Form2: AcceptButton = button1

button1: Text = OK, DialogResult = OK, Visible = False

Fig. 23.3. Form2 view at intermediate stage of development

Place menuStrip1 on Form1. If the menu bar added to Form1 is overlapped by

the upper part of the dataGridView1 table, then select the menuStrip1 control and

click on the Send to Back button on the right side of the Layout panel (see the

comment in Section 21.3).

Using the menu designer (see Section 12.1), create a first-level menu item

with the text &About… in the menuStrip1 menu (see Fig. 23.4) and use the

Properties window to change the name of this item (that is, the Name property)

to about1. Define the Click event handler for the created menu item:

about1.Click handler
private void about1_Click(object sender, EventArgs e)

{

 form2.ShowDialog();

}

238

Fig. 23.4. The final view of Form1

Add two statements to the Form1_Load method:

form2.UseWaitCursor = false;

form2.Controls["button1"].Visible = true;

Result. Now the splash window can be displayed (as a modal window) af-

ter loading the main form using the About… menu command. To close the

splash window in this case, use the OK button or the Enter key. When the splash

window is displayed during loading of the main form, the OK button is not dis-

played on it.

23.4. Displaying the progress of the program loading

Place the ProgressBar control (named progressBar1) on Form2 and set its

properties (see also Fig. 23.5):

Properties
progressBar1: Dock = Bottom, Modifiers = Internal,

 Style = Continuous

Fig. 23.5. The final view of Form2

Modify the Form1_Load method of Form1 as follows:
private void Form1_Load(object sender, EventArgs e)

{

239

 int n = 7, nMax = 100001;

 string[] args = Environment.GetCommandLineArgs();

 if (args.Length > 1)

 try

 {

 int n0 = int.Parse(args[1]);

 if (n0 < 2 || n0 > nMax)

 throw new Exception();

 else

 n = n0;

 }

 catch

 {

 string s = string.Format("Invalid parameter: {0}\n" +

 "Valid values are from 2 to {1}", args[1], nMax);

 MessageBox.Show(s, "Error", MessageBoxButtons.OK,

 MessageBoxIcon.Error);

 Close();

 return;

 }

 double step = 1.0 / (n - 1);

 dataGridView1.Columns[0].Width /= 2;

 dataGridView1.RowCount = n;

 for (int i = 0; i < n; i++)

 {

 double x = i * step,

 sx = Math.Sin(Math.PI * x),

 cx = Math.Cos(Math.PI * x);

 dataGridView1[0, i].Value = x.ToString("f5");

 dataGridView1[1, i].Value = sx.ToString();

 dataGridView1[2, i].Value = cx.ToString();

 dataGridView1[3, i].Value = (sx / cx).ToString();

 dataGridView1[4, i].Value = (cx / sx).ToString();

 form2.progressBar1.Value = 100 * i / (n - 1);

 }

 System.Threading.Thread.Sleep(1000);

 form2.Hide();

 form2.UseWaitCursor = false;

 form2.Controls["button1"].Visible = true;

 form2.progressBar1.Visible = false;

}

240

Result. When the main window is loading, the splash window displays

graphical information about the loading progress (that is, about the percentage of

calculations performed); the progressBar1 control is used for this. On subsequent

calls of the splash window using the About… menu item, the progressBar1 con-

trol is not displayed.

Comments
1. The ProgressBar control implements the progress bar and allows you to

display information about the progress of a certain process in three modes de-

termined by the Style property: the indication in the form of a continuous strip

(Continuous, used in our program), indication in the form of a set of rectangu-

lar blocks (Blocks, the default value), and indication in the form of running

markers (Marquee). The latter mode is convenient to use in a situation where

you need to indicate the execution of some long-term actions, but it is difficult

to determine which part of the actions has already been completed. In Mar-

quee mode, no additional customization of the ProgressBar is required; just note

that the MarqueeAnimationSpeed property can be used to specify the speed at

which markers move. In the other two modes, the appearance of the indicator

depends on the values of three integer properties: Value, Minimum (default val-

ue 0), and Maximum (default value 100). The value of the Value property ranges

from Minimum to Maximum and determines which part of the indicator will be

highlighted. Although the ProgressBar control provides the Increment and

PerformStep methods to change the Value property, there is no particular need

for these methods because the Value property is mutable.

2. By setting the value of the Modifiers property of the progressBar1 control

to Internal, we got the opportunity to directly access this control from the

methods of another form (namely, the Form1 owner form). In this case, there is

no need to use the Controls collection property (which was used in Section 23.3

to access from Form1 to the button1 control of Form2).

23.5. Early termination of the program

Define a handler for the KeyDown event for Form2:

Form2.KeyDown handler
private void Form2_KeyDown(object sender, KeyEventArgs e)

{

 if (e.KeyCode == Keys.Escape)

 Hide();

}

In the Form1_Load method of Form1, at the beginning of the for loop, insert

a new piece of code:

Application.DoEvents();

if (!form2.Visible)

{

241

 Close();

 return;

}

Result. The program execution can be interrupted during the initial calcula-

tions; to do this, just press the Esc key. In this case, the splash window disap-

pears from the screen and the program exits immediately.

Comments
1. Pay attention to calling the DoEvents method before checking if form2

remains visible on the screen. As noted earlier (see Section 23.2), the DoEvents

method allows you to handle events that occurred after the start of some meth-

od (in our case, after the start of the Form1_Load method, we want to handle

event related with pressing the Esc key). In the absence of the DoEvents meth-

od, all such events will be handled only after the current method finishes, that

is, in our case, after the completion of all actions associated with the calcula-

tion of data.

2. When the splash window is displayed using the About... command,

pressing the Esc key does not close it. This is due to the fact that, in this case,

the events associated with the keyboard go directly to the active control button1,

bypassing the Form2. In order for the Esc key to close the window in this case,

it is enough to set the KeyPreview property of Form2 to True. After the correc-

tion has been made, the splash window called up by the About... command can

be closed either by pressing the Enter key, or by pressing the Esc key. Instead

of setting the KeyPreview property to True, you can set the CancelButton proper-

ty to button1.

23.6. Dragging the splash window

Add the field to the Form2 class declaration:

private Point p;

Define event handlers for the MouseDown and MouseMove events for the la-
bel1 control of Form2:

label1.MouseDown and label1.MouseMove handlers
private void label1_MouseDown(object sender, MouseEventArgs e)

{

 p = e.Location;

}

private void label1_MouseMove(object sender, MouseEventArgs e)

{

 if (Control.MouseButtons == MouseButtons.Left)

 Location += new Size(e.X - p.X, e.Y - p.Y);

}

Result. The splash window can now be dragging around the screen with the

mouse; to do this, place the mouse cursor in any position of the window, press

242

the left mouse button, and, without releasing it, move the mouse to the required

position on the screen.

Note. Previously, a similar drag method was used in Section 9.1. This

method is most natural for those windows that do not contain a title bar.

Disadvantage. The splash window can also be dragged when it is first ap-

pears on the screen (during data initialization), which is usually not desirable.

Correction. Select the label1 control and clear the text box associated with

the MouseMove event in the Properties window. In the declaration of the la-
bel1_MouseMove method, replace the private modifier with internal. In the

Form1.cs file, add a new statement to the Form1_Load method:

form2.Controls["label1"].MouseMove += form2.label1_MouseMove;

Result. Dragging the splash window is possible only when it is displayed

on the screen using the About… command. At the moment of initial loading of

the program, the splash window cannot be dragged, because the label1_Mouse-
Move method is not yet associated with the MouseMove event of the label1 con-

trol.

Let us give a view of the running program after calling the splash window

by the About… command in the case when the number of points n is 15

(Fig. 23.6).

Fig. 23.6. View of the running TRIGFUNC application

243

24. Creating controls at runtime: HTOWERS project

The HTOWERS project is a computer implementation of the well-known

logic problem “Towers of Hanoi” (or “Tower of Hanoi”). This problem is as fol-

lows: there are three rods, one of them contains (in decreasing order of size)

several disks forming a “tower”; it is required to move the entire tower to one of

the empty rods using the other empty rod as an auxiliary one. You can move one

disk at a time; a larger disk cannot be placed on a smaller one. For solving the

problem with N disks, the minimum number of moves is 2
N
 – 1 (see [4, Chap-

ter 1]).

The HTOWERS application uses three rectangular areas (GroupBox con-

trols) instead of rods and rectangular blocks (Label controls) instead of discs;

blocks can be moved between areas. The HTOWERS project demonstrates the

capabilities associated with creating controls at runtime. Moving blocks is im-

plemented using the drag-and-drop mode. The application has a demo mode

showing the correct sequence of moves to solve the problem.

24.1. Creating a start position

After creating the HTOWERS project, place three controls of GroupBox

type (they will be named groupBox1 – groupBox3) and the NumericUpDown control

(named numericUpDown1) on Form1. Set the properties of Form1 and all the added

controls and arrange the controls as shown in Fig. 24.1.

Properties
Form1: Text = Towers of Hanoi, MaximizeBox = False,

 FormBorderStyle = FixedSingle, StartPosition = CenterScreen

groupBox1: Text = Start position

groupBox2–groupBox2: Text = empty string

numericUpDown1: Minimum = 2, Maximum = 10, Value = 4

Fig. 24.1. Form1 view at the initial stage of development

244

Define the Load event handler for Form1:

Form1.Load handler
private void Form1_Load(object sender, EventArgs e)

{

 Random r = new Random();

 // n is the number of tower blocks:

 int n = (int)numericUpDown1.Value,

 w = groupBox1.Width,

 h = groupBox1.Height;

 for (int i = 0; i < n; i++)

 {

 Label lb = new Label();

 // defining the properties of the created Label control

 // (the i-th block of the tower);

 // all blocks are drawn on the groupBox1 control:

 lb.Parent = groupBox1;

 lb.BorderStyle = BorderStyle.FixedSingle;

 lb.Size = new Size((w - 10) * (n - i) / n, (h - 15) / n);

 lb.Location =

 new Point((w - lb.Width) / 2, h - 2 - (i + 1) * lb.Height);

 // the label background color is determined randomly:

 lb.BackColor = Color.FromArgb(r.Next(256), r.Next(256),

 r.Next(256));

 }

}

Result. When the program starts, a tower of four colored blocks (which are

the controls of Label type) is drawn on the groupBox1 control.

Comment
Any container control (in particular, a form) can be specified as the parent

control of any visual control by assignment to Parent property of this visual

control. Instead of the lb.Parent = groupBox1 statement, we can use the equiva-

lent call to the Add method for the Controls collection property of the parent

control:
groupBox1.Controls.Add(lb);

The parent control is responsible for redrawing all of its child controls. If

the control has no parent, it cannot be displayed on the screen.

24.2. Redrawing the tower when changing the number
of blocks

Define a handler for the ValueChanged event for the numericUpDown1 con-

trol:

245

numericUpDown1.ValueChanged handler
private void numericUpDown1_ValueChanged(object sender,

 EventArgs e)

{

 Form1_Load(this, null);

}

Result. Changing the value of the numericUpDown1 control creates a new

tower with the specified number of blocks.

Error. The new tower is drawn over the old one.

Correction. Add a new method label_Dispose to the declaration of the

Form1 class:

private void label_Dispose(GroupBox gb)

{

 for (int i = gb.Controls.Count - 1; i >= 0; i--)

 gb.Controls[i].Dispose();

}

Add the following statement at the beginning of the numericUpDown1_Value-
Changed method:

label_Dispose(groupBox1);

Result. Now all blocks of the old tower disappear from the screen and also

free their resources.

Disadvantage. In the process of forming a new tower, extraneous frag-

ments of images flicker on the screen. This diadvantage is due to the fact that

after defining a parent for a label, this label is immediately drawn on its parent,

and all subsequent changes to its properties lead to redrawing of the label.

Correction. In the Form1_Load method, move the statement
lb.Parent = groupBox1;

to the end of the loop body (that is, to the position after the statement defining

the background color of the label).

Result. Now all settings of the label’s properties are performed before its

parent control is defined, therefore, they do not lead to redrawing of the label on

the screen (the label is drawn only once after setting all its properties).

24.3. Dragging blocks to a new location

Add a new statement to the constructor of the Form1 class:

groupBox1.AllowDrop = groupBox2.AllowDrop =

 groupBox3.AllowDrop = true;

Add new methods named label_MouseDown and label_Move to the Form1

class:

private void label_MouseDown(object sender, MouseEventArgs e)

{

 if (e.Button == MouseButtons.Left)

246

 DoDragDrop(sender, DragDropEffects.Move);

}

private void label_Move(Label lb, GroupBox gb)

{

 // change the GroupBox control that displays the lb label:

 lb.Parent = gb;

 lb.Top = gb.Height - 2 - gb.Controls.Count * lb.Height;

}

Add the following statement at the end of the loop body in the Form1_Load

method:

lb.MouseDown += label_MouseDown;

Define event handlers for the DragEnter and DragDrop events for the

groupBox1 control and then connect these handlers to the DragEnter and DragDrop

events of the groupBox2 and groupBox3 controls:

groupBox1.DragEnter and groupBox1.DragDrop handlers
private void groupBox1_DragEnter(object sender, DragEventArgs e)

{

 e.Effect = DragDropEffects.Move;

}

private void groupBox1_DragDrop(object sender, DragEventArgs e)

{

 Label lb = e.Data.GetData(typeof(Label)) as Label;

 GroupBox gb = sender as GroupBox;

 if (gb == lb.Parent)

 return;

 label_Move(lb, gb);

}

Result. Any block (that is, the Label control) can be dragged to another

tower (that is, the GroupBox control), and the moved block will always be at the

top of the tower.

Remark. Actions related to moving a label to another GroupBox control are

implemented as a special label_Move method, since these actions will be per-

formed not only when executing DragDrop handlers, but also in an additional

demo mode of the program (see Section 24.6).

Error. You can drag not only the top block, but also any other block of the

tower.

Correction. Change the groupBox1_DragEnter method as follows:
private void groupBox1_DragEnter(object sender, DragEventArgs e)

{

 Label lb = e.Data.GetData(typeof(Label)) as Label;

 if (lb.Parent.Controls[lb.Parent.Controls.Count - 1] != lb)

247

 e.Effect = DragDropEffects.None;

 else

 e.Effect = DragDropEffects.Move;

}

Result. Only the top block of the tower can be dragged. When you try to

drag the lower blocks, the drag-and-drop cursor takes the form of a prohibition

sign .

Remark. We took advantage of the fact that, when you add a child to the

Controls collection, it is placed at the end of it; therefore, the top block has an in-

dex equal to Controls.Count – 1 in the Controls collection.

It remains to take into account the additional condition of the problem: the

block can move either to an empty tower or to a tower with a top block of the

larger size. To do this, we change the groupBox1_DragEnter method again:
private void groupBox1_DragEnter(object sender, DragEventArgs e)

{

 Label lb = e.Data.GetData(typeof(Label)) as Label;

 int k = int.MaxValue;

 GroupBox gb = sender as GroupBox;

 if (gb.Controls.Count > 0)

 k = gb.Controls[gb.Controls.Count - 1].Width;

 if (lb.Parent.Controls[lb.Parent.Controls.Count - 1] != lb

 || lb.Width > k)

 e.Effect = DragDropEffects.None;

 else

 e.Effect = DragDropEffects.Move;

}

Result. When dragging the block, the additional condition is taken into ac-

count.

Remark. The new version of the groupBox1_DragEnter method uses the var-

iable k, which contains the width of the top block of the receiving panel or the

maximum possible int value (equal to int.MaxValue) if the receiving panel con-

tains no blocks.

Error. When changing the number of blocks using the numericUpDown1

control, only those blocks that are on the groupBox1 panel are deleted.

Correction. Change the numericUpDown1_ValueChanged method:
private void numericUpDown1_ValueChanged(object sender,

 EventArgs e)

{

 label_Dispose(groupBox1);

 label_Dispose(groupBox2);

 label_Dispose(groupBox3);

248

 Form1_Load(this, null);

}

Comment

Drag-and-drop mechanism was discussed in detail in Chapter 10. Note that

the AllowDrop property for the GroupBox controls had to be defined in the form’s

constructor, since this property is not displayed in the Properties window.

Next, note that all Label controls have their AllowDrop property set to False (the

default value), so labels cannot act as drop receivers (they are “invisible” to the

drag-and-drop mode). Therefore, the drag-and-drop cursor does not have

a prohibition sign over the labels, and if you drop the source object over the la-

bel, the DragDrop event will occur for the GroupBox control containing this la-

bel.

24.4. Restoring the start position and counting the number
of block movings

Place the Button control (named button1) on Form1, set the Text property of

the button to Start position, and connect its Click event to the existing

numericUpDown1_ValueChanged handler. Also, place the Label control (named la-
bel1) on Form1 (you do not need to change its Text property). Arrange the added

controls according to Fig. 24.2.

Fig. 24.2. Form1 view at an intermediate stage of development

Add declarations of two fields and the Info helper method to Form1 class:

private int count;

private int minCount;

private void Info()

{

 label1.Text = $"Number of moves: {count} ({minCount})";

}

Add three statements to the Form1_Load method:

249

count = 0;

minCount = (int)Math.Round(Math.Pow(2, n)) - 1;

Info();

Add two statements to the label_Move method:

count++;

Info();

Result. To restore the starting position with the same number of blocks,

press the Start position button. If, when restoring the initial position, it is neces-

sary to change the number of blocks, it is sufficient to specify a new value in the

numericUpDown1 control (in this case, you do not need to press the button).

Information about the number of block movings is displayed in the text of

label1. There, in parentheses, the minimum number of moves required to solve

the problem with a given number n of blocks is indicated (this minimum number

is equal to 2
n
 – 1).

Remark. Note that block movings within the same GroupBox control are

not counted when calculating the number of moves.

Comments
1. When forming the text of label1 in the Info method, an interpolated string

was used (see Сomment 7 in Section 2.2).

2. The Pow function of the Math class was used to find the value of 2
n
. Since

it returns a result of double type, the resulting value must be converted to an in-

teger type. Since the fractional part is discarded when using the (int) operator,

we first round the resulting number to the nearest integer using the Round func-

tion. Note that the (int) conversion remains necessary after rounding, since the

Round function returns a result of double type (with a zero fractional part).

24.5. Information about solving the problem

Place another label (named label2) on Form1 under the existing label, set its

Text property to Problem solved! and set its ForeColor property to Green.

In the Form1_Load method, add the statement

label2.Visible = false;

Add the following piece of code to the label_Move method:

if (groupBox2.Controls.Count == numericUpDown1.Value

 || groupBox3.Controls.Count == numericUpDown1.Value)

 label2.Visible = true;

Result. The problem is considered solved and the message Problem

solved! is displayed if the size of the tower at one of two final positions (on the

groupBox2 or groupBox3 control) is equal to the total number of blocks.

Disadvantage. After solving the problem, dragging blocks is still allowed.

Correction. Add the following piece of code to the beginning of the

groupBox1_DragEnter method:

if (label2.Visible)

250

{

 e.Effect = DragDropEffects.None;

 return;

}

Result. After solving the problem, blocks cannot be dragged.

24.6. Demo mode implementation

Place another button on Form1 (button2) and set its Text property to Demo.

Form1 will take the view shown in Fig. 24.3.

Fig. 24.3. The final view of Form1

Add a new Step method to the Form1 class:

private void Step(int n, GroupBox src, GroupBox dst,

 GroupBox tmp)

{

 if (n == 0)

 return;

 Step(n - 1, src, tmp, dst);

 if (button1.Enabled)

 return;

 label_Move(src.Controls[src.Controls.Count - 1] as Label, dst);

 Application.DoEvents();

 System.Threading.Thread.Sleep(1500 /

 ((int)numericUpDown1.Value) - 1);

 Step(n - 1, tmp, dst, src);

}

Define the Click event handler for button2:

button2.Click handler
private void button2_Click(object sender, EventArgs e)

{

 numericUpDown1.Enabled = button1.Enabled = !button1.Enabled;

251

 if (!button1.Enabled)

 {

 if (groupBox1.Controls.Count != numericUpDown1.Value)

 numericUpDown1_ValueChanged(null, null);

 Step((int)numericUpDown1.Value, groupBox1, groupBox3,

 groupBox2);

 numericUpDown1.Enabled = button1.Enabled = true;

 }

}

Add the following statement to the beginning of the label_MouseDown

method:

if (!button1.Enabled)

 return;

Result. When you click the Demo button, the program switches to demo

mode, which demonstrates the correct sequence of moves to solve the problem

with a given number of blocks (blocks move automatically). In demo mode, the

numericUpDown1 control and the Start position button are not available; also,

you cannot drag labels. Demo mode is exited after completing the solution, as

well as when the Demo button is clicked again (in the latter case, after exiting

the demo mode, you can continue to solve the problem yourself).

Error. When trying to terminate a program in demo mode, an ArgumentOut-
OfRangeException run-time error occurs due to the fact that previously called Step

methods continue execution after the Controls collection properties of the

GroupBox controls have been cleared as a result of the terminating program ac-

tions.

Correction. Define the FormClosed event handler for Form1:

Form1.FormClosed handler
private void Form1_FormClosed(object sender,

 FormClosedEventArgs e)

{

 button1.Enabled = true;

}

Result. Now, when the form is closed, button1 is made available, which

makes it possible to almost immediately complete all recursive calls to the Step

method without accessing the Controls collection.

Comment
The Step(n, src, dst, tmp) method defines the actions required to solve

a problem with n blocks. The last three parameters (of GroupBox type) define

the starting area (the src parameter, source), the ending area (the dst parameter,

destination), and the auxiliary area (the tmp parameter, temporary). Obviously,

to solve a problem with n blocks, it is enough to perform three steps.

252

Step 1. Move n - 1 blocks from the src area to the tmp area using the dst area

as an auxiliary.

Step 2. Move the n-th block from the src area to the dst area.

Step 3. Move n - 1 blocks from the tmp area to the dst area using the src area

as an auxiliary.

Steps 1 and 3 can me performed as a call to the same step method with the

first parameter equal to n - 1. Thus, the method implements a recursive algo-

rithm. The chain of recursive operations should be interrupted when the param-

eter n becomes equal to 0. In addition, the Step method provides another way to

exit: if the Demo button was pressed again (to check this action, the Enabled

property of the button1 control is analyzed).

Step 2 is implemented using the label_Move method. After calling this

method, you must call the DoEvents method of the Application class, which pro-

vides redrawing the moved label and also allows to handle the Demo button

click if the user wants to exit demo mode earlier. The Sleep method of the

Thread class is also called, which pauses the program execution for a while

(this period of time depends on the number of blocks). We used the DoEvents

and Sleep methods earlier in Chapter 23 (see Comments 2–3 in Section 23.2

and Comment 1 in Section 23.5).

Here is a view of a running program after solving a problem with five

blocks (Fig. 24.4).

Fig, 24.4. View of the running HTOWERS application

253

25. Study assignments

25.1. General requirements

If the form does not contain controls for which it makes sense to resize,

then it cannot be resized or maximized.

When placing controls in a form, make optimal use of the form space. For

forms of variable size, you should actively use the Anchor or Dock properties.

All actions provided in the project must be associated with keyboard

shortcuts. Information about keyboard shortcuts should be available in the pro-

gram window through underlined characters in the titles of controls, additional

text in parentheses (for example, Run (F5)), default buttons. Changing the focus

with the Tab key should occur in a natural order: left to right and top to bottom.

Programs should not contain handlers of the same type; instead, you must

connect one handler to multiple controls. Actions applied to multiple controls

must be performed in a loop using the Controls property of the form.

The default names of controls should not be changed, except for the names

of menu items and shortcut buttons.

25.2. CONSOLE project: console applications,
file and directory processing

General guidelines. All input data for the program must be passed using

command line arguments. To test a program with different arguments, use the

project settings specified in the Debug group and prepare a special directory

structure on disk.

The program should provide formatted output (for instance, using interpo-

lated strings). LINQ queries can be useful in a number of situations.

The program must correctly handle directories with relative paths (that is,

with paths that do not start with a drive letter and a backslash). For example,

specifying the dir1 directory means that the dir1 directory is a subdirectory of

the current directory. Special directory names “.” (one dot) and “..” (two dots)

do not need to be processed.

At the beginning of its work, the program should print to the console an ex-

ample of its call with the command line arguments (if some arguments are op-

tional, they are enclosed in square brackets). If there is an invalid argument (for

example, the name of a directory that does not exist), the program should dis-

play an error message. After the completion of the data output, it is necessary

that the form does not close immediately and allows the user to view the results

obtained.

254

1. At the end of program work, a list of files from the current directory (or

the directory specified as a command line argument) is displayed in the console.

Files are sorted by size. Information about files should be displayed in three col-

umns containing the file name, size (in bytes) and creation date. You do not

need to process subdirectories.

2. At the end of program work, a list of subdirectories of the current direc-

tory (or the directory specified as a command line argument) is displayed in the

console. Subdirectories of all levels must be listed in the order of their nesting,

and directories must be indented with four spaces for each level. At each level,

the directories must be sorted alphabetically by name.

3. At the end of program work, the console displays a list of files from the

current or user-specified directory with names matching the user-specified mask

(for example, *.jpg). The directory and mask are specified by the user on the

command line (the first is the mask, the second is the directory). If the second

argument is missing, the current directory is processed. If all arguments are

missing, an error message is displayed. Information about files should be dis-

played in three columns containing the file name, its size (in bytes) and the date

of creation (files are sorted by name in alphabetical order). You do not need to

process subdirectories.

4. At the end of program work, the console displays a list of files matching

the specified mask in all-level subdirectories of the current directory (or the di-

rectory specified as the first command line argument). The mask is specified as

the second argument; if it is not specified, then it is considered equal to *.*. For

each subdirectory, you should output its full name and then a list of the names of

the files that satisfy the mask and are located in this subdirectory, together with

their size in bytes (each name is displayed on a new line with an indention of 4

spaces, the files are sorted in alphabetical order of names). Subdirectories can be

listed in any order.

5. At the end of program work, the console displays summary information

about files matching the specified mask in all-level subdirectories of the current

directory (or the directory specified as the first command line argument). The

mask is specified as the second argument; if it is not specified, then it is consid-

ered equal to *.*. For each subdirectory, first its name is displayed, then (in the

same line) the number of files matching the mask and their total size in bytes.

Subdirectories of all levels must be listed in the order of their nesting, directories

must be indented with four spaces for each level. Within each level, directories

can be listed in any order.

6. At the end of program work, the console displays a list of files from the

user-specified directory with names that match the user-specified creation date

interval (subdirectories are not processed; the start date and end date may coin-

255

cide). The directory, the start date, and the end date are specified by the user on

the command line as three arguments. If there are less than three command line

arguments, an error message is displayed. Information about files should be dis-

played in three columns containing the file name, its size (in bytes), and the cre-

ation date. Files must be sorted in ascending order of creation date. In an exam-

ple of program call (this example should be print to the console at the beginning

of program work), the required date format should be displayed.

7. Create a program that compares the contents of files with the same name

(case insensitive) in the two directories specified by the user as two command

line arguments. If there are less than two command line arguments, an error

message is displayed. Two lists of files are displayed on the screen: (1) a list of

files with the same name and the same contents, (2) a list of files with the same

name and different contents. In each list, files must be sorted alphabetically,

with each name displayed on a new line.

8. Create a program that compares the contents of two directories specified

by the user as two command line arguments. If there are less than two command

line arguments, an error message is displayed. Three lists of files must be dis-

played on the screen: (1) a list of files present in the first directory and absent in

the second, (2) a list of files present in the second directory and absent in the

first, (3) a list of files contained in both directories. File contents is not required

to analyze. In each list, files must be sorted alphabetically, with each name dis-

played on a new line. Filename comparisons are not case sensitive. You do not

need to process subdirectories.

9. Create a program that copies the structure of the nested directories. In the

created directory structure, each subdirectory name must have a prefix specified

by the user in the first command line argument. The source directory (containing

the directory structure to be copied) and the destination directory (in which the

copy of this structure will be created) must be specified as the second and third

command line argument, respectively. If there are less than three command line

arguments, an error message is displayed. The program must display the number

of created directories. You do not need to copy files.

10. Create a program that calculates two values: the number and total size

of all files located in the specified directory and its all-level subdirectories and

satisfying the mask specified by the user. The top-level directory and mask are

specified by the user as the first and second command line arguments, respec-

tively. If no mask is specified, the *.* mask is used. If the directory is also not

specified, then the current directory is processed. Several masks can be specified

in the command line arguments; in this case, each mask is processed separately,

and the program displays more than two values (each two values must be dis-

played on a new line).

256

11. Create a program that searches for a file by mask in the structure of

nested subdirectories, excluding some subdirectories from consideration. The

initial directory name, file mask, and subdirectory names to be excluded are

specified by the user on the command line (there can be multiple names of ex-

cluded subdirectories). Files of the initial directory are always processed. For all

found files, their full name, size (in bytes), and creation date are displayed (files

can be displayed in any order). If names of excluded directories are not speci-

fied, then all subdirectories are processed; if, in addition, no file mask is speci-

fied, then all files are displayed. If all command line arguments are missing, the

current directory is processed.

12. Create a program that finds the characteristics of the structure of nested

directories: the total number of subdirectories, the maximum nesting depth, the

maximum number of files in one directory, the total size of all files in the initial

directory and all subdirectories. The initial directory is specified as a command

line argument; if the initial directory is not specified, then the current directory

is processed.

13. Create a program to rename all files with a user-specified name in

a given directory and all its subdirectories. The user specifies the old and new

file names (without * and ? wildcards) and the top-level directory as command

line arguments. If there are less than three command line arguments, an error

message is displayed. Searching for files to rename should not be case sensitive.

The program displays the total number of renamed files.

25.3. DIALOGS project: form interaction

General guidelines. For dialog boxes (that is, modal forms), it is necessary

to implement the standard actions for the Enter and Esc keys (the Enter key is

always associated with the OK button or its analog, the Esc key is always asso-

ciated with the Cancel key or its analog). When you reopen the dialog box, it

must either retain the previous information or display new information if such is

the condition of a study assignment. In any case, it is necessary to ensure that

the first control of the dialog box is activated. The dialog box should not contain

minimize and maximize buttons. The main form must contain an available min-

imize button; maximization should only be available for the resizable main

form. By default (if a study assignment does not require the dialog box to be

resizable), the dialog box should be fixed in size.

1. The fixed-size main form contains a text box, the Password label, and

the Open a protected form button. The initial password is qwerty. If the pass-

word is input correctly, then, when the button (or the Enter key) is pressed,

a modal form with the Protected form title appears containing two text boxes

with the New password label (at the beginning, these text boxes contain the ini-

tial password) and two modal buttons: OK and Cancel. The OK button is avail-

257

able if both text boxes in the modal form contain the same non-empty text.

When you close the modal form with the OK button or the Enter key, this text

becomes the new password. When you close the modal form with the Cancel

button or the Esc key, the password is not changed. When input a password, the

symbols "*" should be displayed instead of the typed characters; to do this, use

the PasswordChar property of the TextBox control. You do not need to save your

password when you close the application.

2. The fixed-size main form contains the Change scaling button (the button

is located at the upper left corner of the form). When the button is pressed,

a modal form with the Scaling title appears containing a text box with the New

scale (%) label and three buttons: OK, Apply, and Cancel. The OK and Apply

buttons are available if the text box contains an integer in the range from 10

to 300. The initial value of this input box is 100; only digits can be input in this

box. When you press the OK or Apply buttons, the main form and the button it

contains change their sizes in accordance with the new scale factor (for example,

if the factor is 200, then the sizes are doubled); in case of pressing the OK but-

ton, the modal form will close. The scaling is always relative to the initial size of

the form. When you click the Cancel button, the modal form closes without per-

forming any additional action. When you reopen the modal form, the text box

should display the current scale factor value.

3. The resizable main form contains a multi-line text box. When you try to

close the form, a modal form appears with buttons: Save, Not save, Cancel.

When you click the Save button, the entered text will be saved in the text.txt

file. Pressing the Cancel button cancels the closing of the main form. When you

reopen the form, if there is a text.txt file, its text is loaded into the text box.

4. The resizable main form contains the Show button. When this button is

clicked, a modal form appears with two text boxes containing the current values

of the coordinates of the upper left corner of the Show button (the x coordinate

is displayed in the first text box, the y coordinate in the second) and the buttons

OK, Apply, and Cancel . When you click the OK or Apply buttons, new coor-

dinates are set for the Show button; in case of pressing the OK button, the mod-

al form will close. When you click the Cancel button, the modal form closes

without performing any additional action. If the text boxes contain invalid val-

ues, the OK and Apply buttons should be unavailable (the value is considered

valid if it can be converted to a non-negative number and, after moving to the

specified position, the Show button will be at least partially visible on the

screen).

5. The fixed-size main form contains the Twin button. When you click the

button, a modal form of the same size appears with the OK and Cancel buttons.

The modal form can be resized. The OK button (and the Enter key) closes the

258

modal form and sets the size of the modal form for the main form, the Cancel

button (and the Esc key) also closes the modal form, but does not change the

size of the main form.

6. The resizable main form contains the Add Label button. When you click

the button, a modal form appears with two text boxes for the coordinates of

a new label, a text box for the text of this label, and buttons OK, Apply, and

Cancel. The OK and Apply buttons are available if the coordinates of a new la-

bel are non-negative numbers corresponding to some point in the main form and

the label text is a non-empty string. When you click the OK or Apply buttons,

a new label is created in the main form in the position specified by the user; in

case of clicking the OK button, the modal form will close. When you click the

Cancel button, the modal form closes without performing any additional action.

If the modal form was closed by pressing the OK button, then, when it is reo-

pened, the coordinates for the new label should increase by 20.

7. The fixed-size main form contains the Toss a coin button and labels dis-

playing statistics with the text Total number of tosses = 0 and Percentage of

heads = 0. When you click the Toss a coin button, a modal form appears with

a text box for input the number of tosses and the OK, Apply, and Cancel but-

tons. The OK and Apply buttons are available if the text box contains an integer

in the range from 1 to 10000. The initial value of this input box is 10; only digits

can be input in this box. When you press the OK or Apply buttons, the required

number of coin tosses is simulated and statistics labels are updated in the main

form; in case of pressing the OK button, the modal form will close. When you

click the Cancel button, the modal form closes without performing any addi-

tional action. Use the Random class to simulate a coin toss.

8. The fixed-size main form contains three labels. When you click on one of

the labels, a modal form appears with a text box and buttons OK, Apply, and

Cancel. The text box contains the text of the label being clicked; this text can be

changed. When you click OK or Apply, the text of the corresponding label in

the main form is updated; in case of pressing the OK button, the modal form

will close. When you click the Cancel button, the modal form closes without

performing any additional action.

9. The fixed-size main form contains three text boxes and a label (not a but-

ton!) with the text Change edit mode. At the launching of the program, the first

text box has focus, and all text boxes are editable. When you click on the label,

a modal form appears with the label Are you sure? and buttons Yes and No.

Clicking the Yes button changes the edit mode for the text box that has focus

(editable mode is switched to read-only mode and vice versa). Pressing the No

button does not change the edit mode. In any case, the modal form will close.

259

You should implement the modal form yourself without using the MessageBox

class.

10. The fixed-size main form contains the Change Background button.

When you click this button, a modal form appears with three text boxes for input

the intensities of the red, green, and blue color components. In addition, the

modal form contains buttons OK, Apply, and Cancel. When you click the OK

or Apply buttons, the background color of the main form changes; in case of

clicking the OK button, the modal form will close. When you click the Cancel

button, the modal form closes without performing any additional action. If at

least one of the text boxes contains text other than a number from the range 0–

255, then the OK and Apply buttons should be unavailable. Use the Color struc-

ture and its FromRGB method.

11. The resizable main form contains the Change alignment button. When

you click on this button, a modal form appears with two drop-down lists labeled

Horizontal alignment and Vertical alignment. Each list contains three options:

Align Left, Align Center, Align Right for the Horizontal alignment list and

Align Top, Align Middle, Align Bottom for the Vertical alignment list. In ad-

dition, the modal form contains buttons OK, Apply, and Cancel. When you

click the OK or Apply buttons, the main form changes its position on the screen

in accordance with the values of the drop-down lists; in case of clicking the OK

button, the modal form will close. When you click the Cancel button, the modal

form closes without performing any additional action. When aligning, take into

account the current size of the main form. Use the PrimaryScreen.WorkingArea

property of the Screen class. Working with drop-down lists is described in the

LISTBOXES project (Section 19.1).

25.4. SYNC project: control synchronization

General guidelines. In all projects, it is required to configure all controls of

the same type by specifying one event handler for each group of controls of the

same type. If statements (such as if (n == 1), if (n == 2), if (n == 3), ...) or switch

statements should not be used in handlers. It is allowed to use the Tag properties

of the controls, as well as the Controls property of the form, which allows you to

refer to a control by its name. See the CALC project (Section 6.1) for infor-

mation on sharing event handlers.

Working with text boxes is described in the CALC project (Section 6.5) and

TEXTBOXES project (Section 8.1). Working with checkboxes is described in

the CHECKBOXES project (Chapter 20). Working with radio buttons is de-

scribed in the TEXTBOXES project (Section 8.2). Working with toolbar and

shortcut buttons is described in the TEXTEDIT4 project (Chapter 15). Working

with track bars is described in the COLORS project (Section 18.1). Working

with NumericUpDown controls is described in the TEXTEDIT6 project (Sec-

260

tion 17.3). Working with progress bars is described in the TRIGFUNC project

(Section 23.4).

1. The main form contains six text boxes with the text 1 – 6 and the Show

button. When the Show button is clicked, a second (non-modal) form appears

containing six checkboxes (the CheckBox controls). The checkboxes are labeled

1 – 6; initially none of them is checked. When you check any checkbox, the text

of the corresponding text box is highlighted in bold; when you uncheck the

checkbox, the bold highlighting of the corresponding text box is canceled. When

changing the text of any text box, the label of the corresponding checkbox

should change accordingly.

2. The main form contains six text boxes with the text 1 – 6 and the Show

button; the text of the first text box must be in bold. When the Show button is

clicked, a second (non-modal) form appears, containing six radio buttons (the

RadioButton controls). Radio buttons are labeled 1 – 6; the radio button corre-

sponding to the bold text box must be selected. When you select another radio

button, the bold highlighting is transferred to the text of the corresponding text

box. When changing the text of any text box, the label of the corresponding ra-

dio button should change accordingly.

3. The main form contains the Show button and the toolbar (the ToolStrip

control) with 6 shortcut buttons (the ToolStripButton controls). The shortcut but-

tons on the toolbar have titles 1 – 6; initially, none of the shortcut buttons is in

the pressed state. When the Show button is clicked, a second (non-modal) form

appears containing 6 checkboxes (the CheckBox controls). The checkboxes are

labeled 1 – 6. When checking/unchecking any checkbox, the corresponding

shortcut button on the toolbar is automatically pressed/released; when the

shortcut button is pressed/released on the toolbar, the corresponding checkbox is

automatically checked/unchecked.

4. The main form contains a Show button and the toolbar (the ToolStrip con-

trol) with 6 shortcut buttons (the ToolStripButton controls). The shortcut buttons

on the toolbar have titles 1 – 6, one of the shortcut buttons is in the pressed state

(initially it is the shortcut button 1). When the Show button is clicked, a second

(non-modal) form appears containing 6 radio buttons (the RadioButton controls).

Radio buttons are labeled 1 – 6; the radio button corresponding to the pressed

shortcut button in the main form should be selected. When another radio button

is selected, the corresponding shortcut button is automatically pressed (and the

previously pressed button is released); when the shortcut button is pressed, the

corresponding radio button is automatically selected (and the previously pressed

shortcut button is released).

5. The main form contains the Show button and six red labels with the text

Color. When the Show button is clicked, a second (non-modal) form appears

261

containing six panels (the Panel controls); each panel contains three radio but-

tons. Radio buttons have labels Red, Green, Blue (these labels can be made

common for all panels by placing three additional Label controls to the left of the

first panel). Initially, the Red radio button is selected in each panel. When you

switch radio buttons, the text color of the corresponding label on the main form

is corrected. When you click on any label of the main form, its color changes

cyclically (from red to green, from green to blue, from blue to red) and the cor-

responding radio button is automatically selected on the corresponding panel of

the second form.

6. The main form contains the Show button and seven NumericUpDown con-

trols with the text 0. When the Show button is clicked, a second (non-modal)

form with seven track bars (the TrackBar controls) appears. When you move the

slider of some track bar, the number in the corresponding text box should auto-

matically change. Specifying a different number in the text box should automat-

ically change the slider position of the corresponding track bar. The range of

values for track bars and text boxes is from 0 to 100. The track bar should only

be synchronized with the text box if the correct number (0 to 100) is entered in

the text box.

7. The main form contains seven progress bars (the ProgressBar controls),

the Default button, and the Show button. When the Show button is clicked,

a second (non-modal) form with seven track bars (the TrackBar controls) appears.

As you change the slider position of some track bar, the content of the corre-

sponding progress bar should automatically change (the range of values for track

bars and progress bars is from 0 to 100). When you click on one of the progress

bars, the corresponding track bar is toggled between available and unavailable

state. When you click the Default button, all progress bars and track bars return

to their initial (zero) position; the accessibility of the track bars does not change.

8. The main form contains the Show button and seven text boxes with the

text text1 – text7. When the Show button is clicked, a second (non-modal) form

appears with seven track bars (the TrackBar controls) and labels containing the

same text as the text boxes in the main form. When you change the slider posi-

tion of some track bar, the width of the corresponding text box in the main form

should automatically change (the range of values for track bars is from 0

to 100). When changing the text in some text box, the text of the corresponding

label in the second form should automatically change.

9. The main form contains the Show button, seven track bars (the TrackBar
controls), and seven labels with the text label1 – label7. The range of values for

track bars is from 10 to 30, the initial value is 10. When the Show button is

clicked, a second (non-modal) form appears with seven text boxes. The content

of the text boxes must be synchronized with the text of the labels of the main

262

form. When you change the slider position of some track bar, the font size for

the corresponding text box changes according to the position of the slider (in the

range from 10 to 30). When you change the text in some text box, the text in the

corresponding label should change accordingly.

10. The main form contains the Show button and seven text boxes with the

text text1 – text7. When the Show button is clicked, a second (non-modal) form

appears with seven text boxes that must be synchronized with the corresponding

text boxes of the main form. Synchronization must be performed whenever the

text in any text box changes. The second form also contains the Stop Synchro-

nization button. When the Stop Synchronization button is clicked, synchroni-

zation stops and the button name is changed to Resume Synchronization.

Clicking the button again resumes synchronization mode, and the text specified

in the text boxes of the main form is used for synchronization. When you close

and reopen the second form, the state of the Stop/Resume Synchronization

button does not change.

11. The main form contains the Show button and seven text boxes with the

text text1 – text7. When the Show button is clicked, a second (non-modal) form

appears with seven labels; the text of label coincides with the text of the corre-

sponding text box. When you click on any label, the background color of the

corresponding text box toggles between white and gray. When you change the

text in the text box with a white background, the text of the corresponding label

is changed accordingly; when you change the text in the text box with a gray

background, the label does not change. However, when you change the back-

ground color of some text box from gray to white, the text of the text box and

the text of the corresponding label should be immediately synchronized.

12. The main form contains the Show button and seven text boxes with the

text text1 – text7. When the Show button is clicked, a second (non-modal) form

appears with seven track bars (the TrackBar controls); slider position of each

track bar coinsides with the length of the text in the corresponding text box.

When editing text in some text box, the slider position of the corresponding

track bar is automatically changed; when the slider position of some track bar is

changed, the text in the corresponding text box is shortened or lengthened (text

lengthening is performed by adding * characters). Track bars can take values

from 0 to 25; text longer than 25 characters cannot be input into the text box.

25.5. DRAGDROP project: drag-and-drop mode

General guidelines. In all projects, the form must have a fixed size. Drag-

and-drop mode has been discussed in detail in the ZOO project (Chapter 10); in

addition, it was used in the LISTBOXES (Section 19.4) and HTOWERS (Sec-

tion 24.3) projects. Working with menus was considered in the TEXTEDIT1

and TEXTEDIT2 projects (Sections 12.1, 13.1–13.3).

263

1. The form contains three multi-line text boxes. Implement the ability to

drag and drop text files from Explorer onto one of the text boxes; as a result of

a such action, the contents of the text file is added to the existing text of this text

box. Only files with the .txt extension should be processed. In addition, imple-

ment the ability to drag and drop the non-empty content of one text box onto an-

other (while holding down the Ctrl key); as a result of a such action, the contents

of the source text box is added to the previous contents of the target text box.

The form menu contains one Command submenu with the Clear and Exit

menu items. The Clear command removes text from the text box that has focus.

2. The form contains three multi-line text boxes and three labels (each label

is placed above the corresponding text box). Initially, the labels contain the text

<No file>. Implement the ability to drag and drop text files from Explorer onto

one of the labels and automatically load the contents of these files into the ap-

propriate text box. Only files with the .txt extension should be processed; the

full file name must be displayed in the corresponding label. You can only drag

and drop a file onto the label with the text <No file>. The form menu contains

one Command submenu with the Save, Clear, and Exit menu items. The Save

and Clear commands affect the focus text box; the Save command saves the

new contents of the text box in the same file, the Clear command clears the text

box along with the associated label (the label displays the text <No file> again).

3. The form contains four “usual” labels with the letters of nucleotides A,

C, T, G and three “wide” labels that have a frame and contain gene sequences

(in the beginning, wide labels are empty). The width of wide labels does not de-

pend on the size of the text and is determined by the width of the form. Imple-

ment the ability to drag and drop a nucleotide letter from a usual label onto

a wide label; the nucleotides are added to the end of the text of the wide label.

Also, implement the ability to drag and drop the contents of one wide label onto

another; this action adds all text of the source label to the end of the target label

text. The form menu contains one Command submenu with the Clear 1,

Clear 2, Clear 3, and Exit menu items. The Clear commands clear the wide la-

bel with the specified number. All Clear commands must use one common han-

dler.

4. The form contains six labels with the text label1 – label6 and six text

boxes with the text textBox1 – textBox6. When you drag and drop a text box

onto a label (while holding down the Ctrl key), the text and font of the label

changes to the text and font of the text box (the position of the text box does not

change). You can drag and drop the text box onto the label several times. The

form menu contains one Command submenu with the Bold, Italic, and Exit

menu items. The Bold and Italic menu items act as checkboxes to set or unset

the bold and italic font mode for the text box that has focus.

264

5. The form contains six buttons with titles button1 – button6 and six

empty list boxes (the ListBox controls). When you drag and drop a button onto

the list box, the title of this button is inserted to the specified position of the list

(the position of the button does not change). You can drag and drop a button on-

to the list several times. The form menu contains one Command submenu with

the Clear and Exit menu items. The Clear command clears the contents of the

list with focus; if a button has focus, the command performs no action. To de-

termine the number of an item in the list by the position of the mouse cursor, use

the IndexFromPoint method (see Section 19.4).

6. The form contains six radio buttons with titles color1 – color6 (titles

have different colors) and six rectangles with a white background (use Panel
controls as rectangles). When you drag and drop a radio button onto a rectangle,

the background color of the rectangle changes to match the color of the title of

the radio button being dragged (the position of the radio button does not

change). The form menu contains one Command submenu with Color and Exit

menu items. The Color command shows the ColorDialog dialog box to change

the color of the title of the selected radio button. Working with the ColorDialog

control is described in Section 13.3.

7. The form contains a panel (the Panel control) and two buttons with titles

New and Trash. Pressing the New button creates a new label located in a ran-

dom place on the panel; the label text is a random capital Latin letter. Implement

the ability to drag and drop the appeared labels onto new location on the panel.

Dragging a label onto the Trash button removes the label. When you drag and

drop one label onto another, the source label is removed and the text of the

source label is added to the text of the target label. The form menu contains one

Command submenu with the Clear and Exit menu items. The Clear command

removes all labels. All labels are also removed by clicking the Trash button.

See the HTOWERS project (Section 24.1) for information on creating controls

at runtime.

8. The form contains four panels (Panel controls) and a group of four radio

buttons with titles 1 – 4 for selecting the current panel. There are three labels

with text label1 – label3 on each panel in random places. Implement the ability

to drag and drop labels from the current panel to any other (in addition, for the

current panel, you can drag and drop labels within this panel). Labels located on

other panels cannot be dragged. The form menu contains one Command sub-

menu with the Color and Exit menu items. The Color command shows the

ColorDialog dialog box to change the color of all labels in the current panel. See

the HTOWERS project (Section 24.3) for information on dragging and dropping

controls between group controls. Working with the ColorDialog control is de-

scribed in Section 13.3.

265

9. Implement an application to test drag-and-drop mode. The form contains

four multi-line text boxes, a label with the text Label, and a label with the text

String. Any of the labels, as well as any objects from other programs, in particu-

lar from Explorer, can be dragged and dropped onto any empty text box. As

a result, detailed information about the drag object is displayed in the text box

(including the available formats, which can be determined using the GetFormats

method). When you drag the Label label, the drag object is the label itself; when

you drag the String label, the drag object is the string with its name (that is, the

string object). The form menu contains one Command submenu with the Clear

and Exit menu items. The Clear command clears the text box that has focus.

10. The form contains a list box for adding file names by dragging and

dropping them from Explorer (the full file name is added to the end of the list).

The form also contains the Trash label. When dragging the list onto the Trash

label (while holding down the Ctrl key), the current list item is deleted and the

next list item (or the previous one if the last list item was deleted) becomes the

current one; the position of the list box does not change. If the list box is empty,

then dragging it is not allowed (that is, the dragging cursor has a prohibition

sign). The form menu contains one Command submenu with the Clear and Ex-

it menu items. The Clear command clears the list box. See the LISTBOXES

project (Section 19.4) for information on dragging and dropping list items.

25.6. TIMER project: timer-controlled programs

General guidelines. In all projects, the form must be resizable; when

changing the form size, the size and position of the form controls must be ad-

justed accordingly (using the Anchor or Dock properties). Working with a timer

was discussed in the CLOCK project (Chapter 7).

1. The form contains a combo box with a list of comments (the ComboBox

control with DropDownStyle = DropDown; initially, it contains only one list

item “–”), an empty list box with the Results label, a stopwatch label with the

text 0:0, and a button with the title Start used to start the stopwatch (when the

stopwatch starts, the button title changes to Stop).

The stopwatch displays seconds and tenths of a second. When you stop the

stopwatch, its text, along with the current comment from the combo box, is ap-

pended to the end of the Results list and the stopwatch label is set to 0:0. To add

a new comment to the list of comments, just input it in the text field of the com-

bo box and press Enter. The form menu contains one Command submenu with

the Clear and Exit menu items. The Clear command clears the Results list.

2. The form contains a label with the lowercase Latin letter a and two read-

only text boxes with the labels Time and Points scored. In the upper part of the

form there is a toolbar with four shortcut buttons Start, 10 sec, 30 sec, 60 sec;

the last three shortcut buttons form a group that necessarily contains one button

266

in the pressed state (initially, it is the button with the title 10 sec). In addition,

the form contains a list box with the Top Scores label, this list box displays the

top 10 scores for the selected time mode (the time mode is determined by the

shortcut buttons 10 sec, 30 sec, 60 sec). List of top scores is sorted in descending

order.

When you press the Start button, the countdown begins in the Time text

box (in tenths of a second), the Points scored text box is reset to zero, and the

Latin letter in the label changes. It is required to press the key with the specified

Latin letter. When the key is pressed correctly, the counter in the Points scored

text box increases by 1 and the letter in the label changes again. If the key is

pressed incorrectly, the Points scored counter decreases by 1. The duration of

one training session (in seconds) is determined by the selected time mode, that

is, by the shortcut button in the pressed state.

After the completion of the training session, the Top Scores list is correct-

ed, if necessary; if the new score is added into the list, then this is reported in the

auxiliary dialog box (use the MessageBox.Show function). The lists of top scores

for each mode are stored in the files scores10.dat, scores30.dat, scores60.dat

and are read from them when changing the mode and when starting the program.

3. The form contains a label and two read-only text boxes with the labels

Time and Points scored. In the upper part of the form there is a toolbar with

five shortcut buttons: Start, “+”, “–”, “*”, “/”; the last four shortcut buttons

form a group that necessarily contains one button in the pressed state (initially, it

is the button with the title “+”). In addition, the form contains a panel with five

radio buttons with empty labels and a list box with the Top Scores label, this list

box displays the top 10 scores for the selected math operation mode (the math

operation mode is determined by the shortcut buttons “+”, “–”, “*”, “/”). List of

top scores is sorted in descending order.

When you press the Start button, the countdown begins in the Time text

box (in tenths of a second), the Points scored text box is reset to zero, and

a numerical expression with the selected math operation appears in the label (for

example, 34 + 78 =). The group of radio buttons displays 5 answer options. You

need to click on the radio button with the correct option. If the answer is correct,

the counter in the Points scored text box is increased by 1; if the answer is in-

correct, it is decreased by 1. In any case, a new expression appears in the label.

The duration of one training session is 30 seconds.

After the completion of the training session, the Top Scores list is correct-

ed, if necessary; if the new score is added into the list, then this is reported in the

auxiliary dialog box (use the MessageBox.Show function). The lists of the top

scores for each mode are stored in the files add.dat, sub.dat, mult.dat, div.dat

and are read from them when changing the mode and when starting the program.

For the “+” and “–” modes, the expressions must use numbers from 1

to 100, for the “*” mode, the expressions must use numbers from 1 to 10, for

267

the “/” mode, the first operand must be two-digit number, the second one-digit

number, and the result must be an integer.

4. The form contains a label with text displaying the current system time of

the computer in the hh:mm format and three checkboxes associated with a sepa-

rate alarm clock. The text near the checkbox indicates the alarm time and is also

in the hh: mm format. Alarm clock is activated at the specified alarm time if the

corresponding checkbox is checked; in this case, the checkbox changes state to

Indeterminate and the sound signal (from the .wav sound file) is played for

10 seconds. If the sound file is less than 10 seconds long, the file is played in

a loop (use the System.Media.SoundPlayer class to play .wav file).

To turn off the signal early, just uncheck the corresponding checkbox. After

10 seconds of sound signal playback, the checkbox is automatically unchecked.

When you check any unchecked checkbox, a dialog box with two drop-down

lists is displayed, in which you can set a new alarm time (hours and minutes);

the default alarm time is the time previously associated with that alarm.

When the program finishes, it saves each alarm time and its current state in

the alarm.dat text file. The saved data is restored when the program is started.

5. The form contains a read-only text box with the text 0:0 and the label

Time, an empty list box with the label Results, and a panel that contains 6 small

square labels numbered 1 – 6. The form menu contains the Command submenu

with the Start and Exit menu items.

When the Start command is executed, all the panel labels change their lo-

cation on the panel randomly and are filled with a red backgroupd color, and the

time count begins in the Time text box (in tenths of a second). You need to

quickly click on all the panel labels in the ascending order of their numbers.

Clicking on the correct label makes its background green. As soon as all 6 labels

are clicked, the time count stops. If the Time text box contains a value less than

10:0 (that is, less than 10 seconds), then the message box with the text You win!

is displayed and this time value is added to the top of the Results list box. Oth-

erwise, the message box You lost is displayed.

The Start menu item should be available only when the game is stopped.

The list of results must be stored in the results.dat file and read from this file

each time the program is started. When changing the position of labels on the

panel, it is necessary that labels do not intersect (see Comment 2 in Section 4.3).

6. The form contains a panel and two read-only text boxes with the labels

Time and Points scored. In addition, the form contains a list box with the label

Top 5 scores. Initially, the Time text box contains the number 30; the Points

scored text box contains the number 0. The form menu contains one Command

submenu with the Start and Exit menu items.

When the Start command is executed, the countdown begins in the Time

text box (from 30 to 0, in seconds) and a small label with the number 50 appears

268

on the panel in a random place (the label size is 10 × 10 pixels). The number on

the label decreases by 1 every tenth of a second. When you click on the label,

the number in the Points scored text box increases by the number on the label

(or decreases if the number on the label is negative) and the label is displayed

elsewhere on the panel (again with the number 50). When you click outside the

label, the number 10 is subtracted from the Points scored value. After 30 se-

conds, the game ends. If the Points scored text box contains a positive number,

then the message box with the text You win! is displayed, otherwise the mes-

sage You lost is displayed; the list of the top scores is adjusted if necessary.

The Start menu item should be available only when the game is stopped.

The top score list must be stored in the score.dat text file and read from this file

each time the program is started.

7. The form contains a panel, a button with the title Start, three read-only

text boxes with the labels Accuracy, Time, and Result (initially, the text boxes

contain zeros), and a list box with the label 5 best results.

When you click on the Start button, its title changes to Stop, the time count

begins in the Time text box (in tenths of a second), and, in one of the corners of

the panel, a square framed label without a text is displayed (the panel corner is

selected randomly). It is required to drag this label with the mouse exactly to the

center of the panel and press the Stop button (when dragging, the label must fol-

low the mouse cursor). After that, the Accuracy text box displays two numbers:

the horizontal and vertical deviations from the correct position (in pixels) and

the Result text box displays a number calculated as follows: 1 is added to the

time obtained (in seconds, with one fractional digit) and this number is multi-

plied by the sum of the absolute values of the deviations. See the MOUSE pro-

ject (Section 9.1) for information on dragging with the mouse.

If the number in the Result text box is less than 50, then the message box

with the text You win! is displayed, otherwise the message You lost is dis-

played; the list of the best results is adjusted if necessary. The list of the best re-

sults must be stored in the results.dat text file and read from this file each time

the program is started.

8. The form contains two read-only text boxes with the labels Missiles and

Time to explosion, a panel, and a single-character label depicting an airplane

(the Wingdings font, symbol Q) located in the left top corner of the panel. The

mouse cursor on the panel looks like a cross. The form menu contains the

Command submenu with the Start and Exit menu items.

When the Start command is executed, the airplane’s label begins a straight-

line movement on the panel (the increments of the Left and Top properties should

be in the range 1–3; they are determined randomly before starting the game and

are performed every tenth of a second) and the number 4 appears in the Missiles

text box. Clicking on the panel marks the point of launching a missile, which

269

will explode after 2 seconds (in the Time to explosion text box, the countdown

begins from 2.0 to 0.0, in tenths of a second); the missile launch point on the

screen should be marked with a red-colored label of the size 2 × 2 pixels. At the

moment of the explosion, the size of the red-colored label increases to 30 × 30

pixels (the destruction area).

If, at the moment of the explosion, the airplane is in the destruction area,

then the message box appears with the text The airplane is shot down and the

game ends. Otherwise, nothing happens. You cannot launch a new missile be-

fore the explosion of a previously launched one. If all the missiles have been

used without results or the airplane has reached the border of the panel, the mes-

sage You lost is displayed. Use the IntersectsWith method to verify that the air-

plane is in the destruction area (see Comment 2 in Section 4.3).

The Start menu item should be available only when the game is stopped.

25.7. REGISTRY project: dialog boxes and working
with the Windows registry

General guidelines. Working with the Windows registry is described in the

IMGVIEW project (Sections 21.5–21.6). Working with the OpenFileDialog dialog

box is described in the TEXTEDIT1 project (Section 12.3). To organize dialogs

related to choosing a font and color, you should use the FontDialog and

ColorDialog controls; an example of working with these controls is given in the

TEXTEDIT2 project (Sections 13.3–13.4). Working with the SplitContainer con-

trol is described in the IMGVIEW project (Sections 21.1–21.2). Working with

selections in the text boxes is discussed in the TEXTBOXES project (Sec-

tion 8.1).

1. The form contains the SplitContainer control with a vertical splitter orien-

tation. The left and right panels of the SplitContainer control contain one label and

one multi-line text box. Initially, focus is on the left text box; pressing the Tab

key toggles focus between the TextBox controls. When the form is resized, the

panels of the SplitContainer control are sized proportionally (you cannot change

the width of the panels by dragging the splitter; both panels always have the

same width). The form menu contains one File submenu with the Open..., Save,

Compare, and Exit menu items.

The Open... command displays the OpenFileDialog dialog box, which allows

you to open existing text files, as well as create new ones (if the required file is

missing, it is created automatically). When the required file is open, its text is

loaded into the active text box and the full file name is displayed in the label

above this text box.

The Compare command is available only if both TextBox controls contain

loaded data; it compares the contents of the left and right text boxes and posi-

tions the cursor before the first differing character in the left text box (pressing

270

Tab should set the cursor before the first differing character in the right text

box).

If the text of the text box is changed by the user, the symbol “*” is indicated

in the label before the file name. The Save command saves the contents of the

active text box in the file with the same name; after that, the symbol “*” disap-

pears in the label.

At the end of the program, the file names are saved in the Windows regis-

try; the next time the program is started, they are read from the registry; the size

and position of the form and the position of the cursor in each text box should

also be restored. When you try to close the program without saving the changed

contents of the files, a standard dialog box appears asking if you want to save

the changed file; the options are Yes, No, Cancel. If there are two unsaved files,

two dialog boxes are displayed sequentially (unless you selected Cancel in the

first dialog box).

2. The form contains a multi-line text box (the size of the text box is auto-

matically resized when the form is resized), a drop-down list of options of num-

ber system conversion: 10 => 2 (this option is selected by default), 10 => 16,

2 => 10, 16 => 10, 16 => 2, 2 => 16, and the Convert button. After the first

launch of the program, at the beginning of its work, the text box is not available

for editing. The form menu contains one File submenu with the Open..., Save,

and Exit menu items.

The Open... command displays the OpenFileDialog dialog box, which allows

you to open existing text files. As a result, the text of this file is loaded into the

text box and the name of the loaded file is displayed in the form title bar.

The Convert button converts the number selected by the user in the text

box from one number system to another (the selected number is replaced by the

converted number; the converted number remains selected). If nothing is select-

ed or the selection contains invalid data, then nothing happens.

If the text of the loaded file has been changed, the symbol “*” is displayed

in the form title bar after the file name. The Save command saves the contents of

the text box in the file with the same name; after that, the symbol “*” disappears

in the form title bar.

At the end of the program, the name of the currently open file is saved in

the Windows registry; the next time the program is started, it is read from the

registry; the last conversion option, the size and position of the form, and the po-

sition of the cursor in the text box are also restored. When you try to close the

program without saving the changed file contents, a standard dialog box appears

asking if you want to save the changed file; the options are Yes, No, Cancel.

3. The form contains a list box with the Playlist label, the buttons

Play/Stop, Up and Down, and the NumericUpDown control with the Duration

(sec) label. The list box is automatically resized when the form is resized. If the

271

list box is empty, the buttons are inactive. The form menu contains one Com-

mand submenu with the Add file, Add folder, Clear, and Exit menu items.

The Add file and Add folder commands show the OpenFileDialog dialog

box, which allows you to open existing wav-files; the Add file command adds

the selected file to the list, the Add folder command adds all wav-files from the

folder to the list (files are added to the end of the list). The last item added to the

list becomes the current item. After adding at least one item to the list, the

Play/Stop button becomes available; if the list contains more than one item, the

Up and Down buttons become available.

Clicking the Play/Stop button starts playback of the current file from the

list or stops playback of a file. The Duration (sec) counter allows you to specify

the playback time of each file (in seconds); the default time is 10 seconds (if the

file duration is less than the specified time, the file is played cyclically). The Up

and Down buttons allow you to move the current item in the list up or down.

When the playing time ends, the file located in the list after the current one starts

playing automatically (this item of the list becomes the current one). Files are

played cyclically. During playback, the ListBox control, the NumericUpDown con-

trol, and the Up and Down buttons are disabled. Use the System.Media.Sound-
Player class to play wav-files; working with list box items is described in the

LISTBOXES project (Sections 19.2–19.3).

At the end of the program, the playlist, the position of the current list item,

the playback time, the size and position of the form are saved in the Windows

registry. The next time the program is started, it should restore the saved state.

4. The form contains the NumericUpDown control with the Symbol code la-

bel and a panel (the GroupBox control) with a label containing one character of

48 points size (the code of this symbol is specified in the NumericUpDown con-

trol). Initially, the program is configured for the Wingdings font; the name of

the font is specified in the title of the GroupBox control. The form menu contains

one Command submenu with the Font... and Exit menu items.

The Font... command shows the FontDialog dialog box, which allows you to

change the name and style of the font, but not its size. The font size should be

changed automatically when the form is resized; the initial form size cannot be

reduced. When value of the NumericUpDown control changed, the corresponding

symbol for the selected font is displayed in the panel. The displayed symbol

must be centered vertically and horizontally relative to the border of the

GroupBox control; to do this, set the appropriate values to the label properties

AutoSize, Dock, TextAlign.

At the end of the program, the value of the NumericUpDown control, the

name and style of the current font, as well as the size and position of the form

are saved in the Windows registry. The next time the program is started, it

should restore the saved state.

272

5. The form contains the NumericUpDown control with the KnownColor

number label and a panel (the GroupBox control). When the form is resized, the

panel size changes proportionally. When you input the number of one of the

standard named colors from the KnownColor enumeration into the NumericUpDown

control, the GroupBox panel is filled with this color and the name of this color is

displayed in the title of this panel. The range of valid values for the NumericUp-
Down control must match the range of all standard named colors of the Known-
Color enumeration: from AliceBlue to YellowGreen. The form menu contains

one Command submenu with the Color... and Exit menu items.

The Color... command shows the ColorDialog dialog box, which allows you

to select a color for the background of the GroupBox panel. If the selected color

is one of the standard named colors, then its number appears in the

NumericUpDown control, if the selected color is not a standard named color, then

an error message is displayed in the standard message box and the panel back-

ground does not change. Working with colors is described in the COLORS and

LISTBOXES projects (Chapter 18 and Section 19.1).

At the end of the program, the value of the NumericUpDown control and the

size and position of the form are saved in the Windows registry. The next time

the program is started, it should restore the saved state.

6. The form contains an empty multi-line text box (the TextBox control) un-

available for editing, with a gray background, the Open button, and 3 track bars

(the TrackBar controls). Each track bar can take 10 values: from 0 to 9. The track

bars are oriented vertically and are located in left-hand side of the form. A label

is displayed above each track bar that contains the current value of that track bar

(a number from 0 to 9). The Open button is located under the track bars, the

multi-line text box occupies the rest (right-hand) part of the form along its entire

height.

When the form is resized, the width and height of the multi-line text box, as

well as the height of the track bars, must change; the minimum allowable size of

the form must be adjusted so that they provide the display of all its controls.

When you set the correct three-digit lock code with the track bars and then

click the Open button (or press Enter), the content of the notebook.txt file (if

this file exists) is loaded into the TextBox control, the background of the TextBox

control turns white, the text box becomes editable, and the button title changes

to Close (if the code is set incorrectly, the appearance of the TextBox control and

the button does not change).

The correct lock code is stored in the Windows registry; if there is no the

corresponding subkey in the registry, then the code is 000. When the text box is

editable, you can set new lock code using the track bars.

When you click the Close button, the text is saved in the notebook.txt file,

the code is saved in the Windows registry, the text box is cleared, its background

273

is grayed out, the button title is changed to Open, and the values of track bars

are changed randomly.

At the end of the program, the size and position of the form are additionally

saved in the Windows registry and are restored the next time the program is

started.

7. The form contains the SplitContainer control with a vertical splitter orien-

tation. The list box is located on the left panel of the SplitContainer control,

a multi-line text box is located on the right panel. The list box and text box are

automatically resized when the form is resized; when the form width changes,

the width of the text box changes. The splitter between the left and right panel of

the SplitContainer control can be dragged. The Tab key allows you to toggle focus

between the list box and the text box. The form menu contains one File sub-

menu with the Open..., Close, and Exit menu items.

The Open... command displays the OpenFileDialog dialog box which allows

you to open existing text files, as well as create new ones (if the required file is

missing, it is created automatically). When the required file is open, its full name

is added to the end of the list box (and becomes the selected list item) and its

text is loaded into the text box. In the future, to load this file into the text box, it

is enough to select its name in the list box. If, when executing the Open... com-

mand, the name of the file is already included in the list box, then this name in

the list is made selected. When a list item loses selection, its associated text is

automatically saved in the appropriate file.

The Close command removes the name of the selected file from the list of

files; this action also automatically saves the text in the file. When a list item is

deleted, the next item is selected; if the next item is absent, the previous item is

selected. If the list box is empty, then the text box is not editable and the Close

menu item is unavailable. Working with list box items is described in the

LISTBOXES project (Sections 19.2–19.3).

At the end of the program, the file list is saved in the Windows registry.

The index of the selected list item, the position of the cursor in the text box, the

size and position of the form, the position of the splitter between the left and

right panels are also saved in the registry. The next time the program is started,

it should restore the saved state.

25.8. MDIFORMS project: MDI applications

Working with MDI applications is described in the JPEGVIEW project

(Chapter 22).

1. The MDI main form initially contains one special child form with the ti-

tle Clipboard, which is entirely occupied by the multi-line TextBox control. This

child form acts as the application’s own clipboard. The MDI application menu

includes three submenus: File (the Open and Exit menu items), Clipboard (the

274

Cut, Copy, Paste menu items), and Window (the HTile, VTile, Cascade, Ar-

range Icons menu items, as well as a list of child forms). The commands of the

Window submenu provide standard MDI application actions related to the

placement of child forms and their selection (see Section 22.2).

The Open command allows you to create or load a text file and display it in

a new child form with the TextBox control (in this case, the Close menu item ap-

pears in the File submenu; this command closes the active child form). In the

OpenFileDialog control used to select the file name, you should set the file mask

(the Filter property) to display only text files (with the .txt extension). If a file

with the specified name does not exist, then it is created. The full name of the

created or loaded file is displayed in the title bar of the corresponding child

form; when you try to reload an existing file, a new child form is not created;

instead, the child form that already contains the specified file becomes active.

When the child form is closed, the corresponding text file is automatically

saved.

When executing the commands Cut, Copy, Paste, the TextBox control of

the Clipboard child form should be used (instead of the standard Windows

clipboard): the text cut or copied from any other child form should be placed on

the Clipboard child form (its previous content is deleted). When the Paste

command is executed, the text from the Clipboard form should be inserted into

the current position of the active child form. The contents of the Clipboard

form can be edited, however, commands related to copying, cutting and pasting

cannot be executed for it; furthermore, this child form cannot be closed.

2. The MDI main form initially contains no child forms. The MDI applica-

tion menu includes two submenus: File (the Open and Exit menu items) and

Group (the Open Group menu item).

The Open command allows you to create or load a text file and display it in

a new child form with the TextBox control; the Open Group command allows

you to immediately load all text files from the selected directory. In the

OpenFileDialog control used to select the file name, you should set the file mask

(the Filter property) to display only text files (with the .txt extension). The

OpenFileDialog control is also used for group file loading; when the Open Group

command is executed, it is sufficient to select one of the text files in the required

directory to load all text files from this directory. When executing the Open

command, you can specify the name of a non-existent file; in this case, it is cre-

ated. The full name of the created or loaded file is displayed in the title bar of

the corresponding child form; when you try to reload an existing file, a new

child form is not created; instead, the child form that already contains the speci-

fied file becomes active. A similar condition must be satisfied for a group load-

ing: already loaded files are not reloaded.

If there is at least one child form, the Close menu item appears in the File

submenu (this command closes the active child form) and the Close Group and

275

Close All menu items appear in the Group submenu (the Close Group com-

mand closes the active child form and all other child forms with files from the

same directory as the active child form file; the Close All command closes all

child forms). When the child form is closed, the corresponding text file is auto-

matically saved.

In addition, if there is at least one child form, the Window submenu ap-

pears in the application menu with the HTile, VTile, Cascade, Arrange Icons

menu items, as well as with a list of child forms. The commands of the Window

submenu provide standard MDI application actions related to the placement of

child forms and their selection (see Section 22.2).

3. The MDI main form initially contains no child forms. The MDI applica-

tion menu includes two submenus: File (the Open and Exit menu items) and

Actions (the Shift Forward, Shift Backward, and Union menu items; these

menu items are available only if there are at least two child forms).

The Open command allows you to create or load a text file and display it in

a new child form with a TextBox control. In the OpenFileDialog control used to se-

lect the file name, you should set the file mask (the Filter property) to display on-

ly text files (with the .txt extension). When executing the Open command, you

can specify the name of a non-existent file; in this case, it is created. The full

name of the created or loaded file is displayed in the title bar of the correspond-

ing child form; when you try to reload an existing file, a new child form is not

created; instead, the child form that already contains the specified file becomes

active. If there is at least one child form, the File submenu displays the Close

menu item that closes the active child form, and the Close All menu item that

closes all child forms. When the child form is closed, the corresponding text file

is automatically saved.

The Shift Forward, Shift Backward, and Union commands change the

contents of the child forms as follows. The Shift Forward command performs

a cyclic shift forward, that is, it moves the contents of the first child form to the

second child form, the contents of the second child form to the third child

form, …, the contents of the last child form to the first child form. The Shift

Backward command performs a cyclic shift backward, that is, it moves the con-

tents of the second child form to the first child form, the contents of the third

child form to the second child form, …, the contents of the first child form to the

last child form. The Union command combines the contents of all child forms

into the active child form; the text is added in the order of child form numbers,

starting with the active child form (for example, when executing the Union

command for the third of five loaded forms, the initial text of the child forms

with the following numbers will be written in the third form: 3, 4, 5, 1, 2).

If there is at least one child form, the Window submenu appears in the ap-

plication menu with the HTile, VTile, Cascade, Arrange Icons menu items, as

well as with a list of child forms. The commands of the Window submenu pro-

276

vide standard MDI application actions related to the placement of child forms

and their selection (see Section 22.2).

4. The MDI main form initially contains no child forms. The MDI applica-

tion menu includes two submenus: File (the Open and Exit menu items) and

Actions (the Move, Add, and Swap menu items; these menu items are available

only if there are at least two child forms).

The Open command allows you to create or load a text file and display it in

a new child form with a TextBox control. In the OpenFileDialog control used to se-

lect the file name, you should set the file mask (the Filter property) to display on-

ly text files (with the .txt extension). When executing the Open command, you

can specify the name of a non-existent file; in this case, it is created. The full

name of the created or loaded file is displayed in the title bar of the correspond-

ing child form; when you try to reload an existing file, a new child form is not

created; instead, the child form that already contains the specified file becomes

active. If there is at least one child form, the File submenu displays the Close

menu item that closes the active child form, and the Close All menu item that

closes all child forms. When the child form is closed, the corresponding text file

is automatically saved.

The Move command changes the order of the child forms by moving the

active form to the end of the list of child forms. To implement this command, it

is enough to close the active child form (and save, if necessary, its contents in

the corresponding file) and create a new child form with the same contents.

The Add and Swap commands modify the contents of the child forms. The

Add command adds the contents of the form that follows the active form to the

contents of the active form. The Swap command swaps the contents of the ac-

tive child form and the form that follows the active form. The first child form is

assumed to follow the last child form.

If there is at least one child form, the Window submenu appears in the ap-

plication menu with the HTile, VTile, Cascade, Arrange Icons menu items, as

well as with a list of child forms. The commands of the Window submenu pro-

vide standard MDI application actions related to the placement of child forms

and their selection (see Section 22.2).

277

References

1. Abramyan M. E. Visual C# by examples. – SPb: BHV-Petersburg,

2008. – 482 p. (In Russian.)

2. Abramyan M. E. .NET Framework: The main types of the standard li-

brary. Working with arrays, strings, files. Objects, interfaces, generics. LINQ

technology. – Rostov-on-Don: SFedU Press, 2014. – 218 p. (In Russian.)

3. Albahari J., Albahari B. C# 6.0 in a Nutshell. The definitive reference.

6th Edition. – Boston: O’Reilly, 2016. – 1114 p.

4. Graham R., Knuth D., Patashnik O. Concrete mathematics. A foundation

for computer science. Reading: Addison-Wesley, 1989. – 625 p.

	Preface
	1. Developing projects in Microsoft Visual Studio environment
	1.1. Creating, saving, and opening a project
	1.2. Adding a new form to the project and placing a new control on the form
	1.3. Setting properties of forms and controls
	1.4. Defining event handlers
	1.5. Making changes to the program text
	1.6. Application launch

	2. Console application: DISKINFO project
	2.1. Creating a console application
	2.2. Receiving the information about current disk
	2.3. Using command line arguments

	3. Exception handling: EXCEP project
	3.1. Handling a specific exception and exception groups
	3.2. Handling any exception
	3.3. Re-throwing a handled exception

	4. Events: EVENTS project
	4.1. Connecting an event to a handler
	4.2. Disconnecting a handler from an event
	4.3. Connecting another handler to an event

	5. Forms: WINDOWS project
	5.1. Setting the visual properties of forms. Opening forms in normal and modal mode
	5.2. Checking the state of the subordinate form
	5.3. Controls adapting to fit the window
	5.4. Modal and non-modal buttons of the dialog window
	5.5. Setting the active form control
	5.6. Request for confirmation of closing the form

	6. Sharing event handlers and working with keyboard: CALC project
	6.1. Event handler for multiple controls
	6.2. Calculations with control of the correctness of the input data
	6.3. The simplest techniques to speed up work using keyboard
	6.4. Using a keyboard event handler
	6.5. Control over changes to the input data

	7. Working with date and time: CLOCK project
	7.1. Displaying the current time on the form
	7.2. Implementation of the stopwatch capabilities
	7.3. Alternative options for executing commands using the mouse
	7.4. Displaying the current status of the clock and stopwatch on the taskbar

	8. Text input: TEXTBOXES project
	8.1. Additional highlighting of the active text box
	8.2. Changing the tab order of text boxes
	8.3. Blocking exit from an empty text box
	8.4. Informing the user about the error
	8.5. Providing additional information about the error
	8.6. Form-level error checking

	9. Mouse event handling: MOUSE project
	9.1. Dragging with the mouse. Setting the z-order of controls on a form
	9.2. Resizing with the mouse
	9.3. Using additional cursors
	9.4. Handling a situation with simultaneous pressing of several mouse buttons
	9.5. Dragging and resizing a control of any type. Using the find and replace tool

	10. Drag-and-drop: ZOO project
	10.1. Dragging labels on a form
	10.2. Dragging labels to text boxes
	10.3. Interaction of labels
	10.4. Actions in case of dragging to invalid target
	10.5. Additional coloring of source and target while dragging
	10.6. Customizing the cursor in drag-and-drop mode
	10.7. Information about the current state of the program. Buttons with images
	10.8. Restoring the initial state

	11. Cursors and icons: CURSORS project
	11.1. Using standard cursors
	11.2. Setting the cursor for a form and waiting mode indication
	11.3. Connecting new cursors to the project and saving them as embedded resources
	11.4. Working with icons
	11.5. Placing an icon of application in the notification area

	12. Menus and processing of text files: TEXTEDIT1 project
	12.1. Menu creation
	12.2. Saving text to a file
	12.3. Clearing the editing area and opening an existing file
	12.4. Request to save changes

	13. Advanced menu options, color and font setting: TEXTEDIT2 project
	13.1. Setting the font style (menu items as checkboxes)
	13.2. Setting text alignment (menu items as radio buttons)
	13.3. Setting the color of symbols and background color (third-level menu commands and the Color dialog box)
	13.4. Setting font properties using the Font dialog box

	14. Editing commands, context menus: TEXTEDIT3 project
	14.1. Editing commands
	14.2. Special visualization of unavailable editing commands. Working with the clipboard
	14.3. Creating a context menu

	15. Toolbar: TEXTEDIT4 project
	15.1. Creation a toolbar and shortcut buttons. Adding images to menu items
	15.2. Using shortcut buttons that behave as checkboxes and radio buttons

	16. Status bar and hints: TEXTEDIT5 project
	16.1. Using the status bar
	16.2. Inaccessible shortcut buttons
	16.3. Hiding the toolbar and status bar
	16.4. Displaying hints on the status bar

	17. Formatting a document: TEXTEDIT6 project
	17.1. Replacing the TextBox control with the RichTextBox control
	17.2. Correcting the state of shortcut buttons and menu commands when changing the current format
	17.3. Setting paragraph properties
	17.4. Display the current row and column
	17.5. Loading and saving text without format settings

	18. Colors: COLORS project
	18.1. Defining a color as a combination of four color components. Track bars and scroll bars
	18.2. Inverting colors and output color constants
	18.3. Grayscale colors
	18.4. Displaying color names
	18.5. Controls and their associated labels
	18.6. Anchoring controls

	19. Drop-down list and list box: LISTBOXES project
	19.1. Creating and using drop-down lists
	19.2. List box: adding and removing items
	19.3. Additional list operations
	19.4. Performing list operations with the mouse

	20. Checkboxes and checked list boxes: CHECKBOXES project
	20.1. Checkboxes and checking their state
	20.2. Global setting of CheckedListBox items
	20.3. Using checkboxes with three states

	21. Viewing images: IMGVIEW project
	21.1. Displaying a directory tree
	21.2. View images from image files in the selected directory
	21.3. Docking of controls and its features
	21.4. Setting the image view mode
	21.5. Saving information about the state of the program in the Windows registry
	21.6. Restoring information from the Windows registry

	22. MDI application: JPEGVIEW project
	22.1. Opening and closing child forms in MDI application
	22.2. Standard actions with child forms
	22.3. Adding a list of open child forms to the menu
	22.4. Closing all child forms at the same time
	22.5. Image scaling
	22.6. Automatic resizing of child forms
	22.7. Additional control tools
	22.8. Scrolling the image using the keyboard

	23. Splash screen application: TRIGFUNC project
	23.1. Creating a table of trigonometric function values
	23.2. Displaying the splash window when loading the program
	23.3. Using the splash window as an information window
	23.4. Displaying the progress of the program loading
	23.5. Early termination of the program
	23.6. Dragging the splash window

	24. Creating controls at runtime: HTOWERS project
	24.1. Creating a start position
	24.2. Redrawing the tower when changing the number of blocks
	24.3. Dragging blocks to a new location
	24.4. Restoring the start position and counting the number of block movings
	24.5. Information about solving the problem
	24.6. Demo mode implementation

	25. Study assignments
	25.1. General requirements
	25.2. CONSOLE project: console applications, file and directory processing
	25.3. DIALOGS project: form interaction
	25.4. SYNC project: control synchronization
	25.5. DRAGDROP project: drag-and-drop mode
	25.6. TIMER project: timer-controlled programs
	25.7. REGISTRY project: dialog boxes and working with the Windows registry
	25.8. MDIFORMS project: MDI applications

	References

